SM
Sara Mitchell
Author with expertise in Global Impact of Arboviral Diseases
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
1,460
h-index:
19
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Extensive introgression in a malaria vector species complex revealed by phylogenomics

Michaël Fontaine et al.Nov 28, 2014
+16
A
J
M
Introduction The notion that species boundaries can be porous to introgression is increasingly accepted. Yet the broader role of introgression in evolution remains contentious and poorly documented, partly because of the challenges involved in accurately identifying introgression in the very groups where it is most likely to occur. Recently diverged species often have incomplete reproductive barriers and may hybridize where they overlap. However, because of retention and stochastic sorting of ancestral polymorphisms, inference of the correct species branching order is notoriously challenging for recent speciation events, especially those closely spaced in time. Without knowledge of species relationships, it is impossible to identify instances of introgression. Rationale Since the discovery that the single mosquito taxon described in 1902 as Anopheles gambiae was actually a complex of several closely related and morphologically indistinguishable sibling species, the correct species branching order has remained controversial and unresolved. This Afrotropical complex contains the world’s most important vectors of human malaria, owing to their close association with humans, as well as minor vectors and species that do not bite humans. On the basis of ecology and behavior, one might predict phylogenetic clustering of the three highly anthropophilic vector species. However, previous phylogenetic analyses of the complex based on a limited number of markers strongly disagree about relationships between the major vectors, potentially because of historical introgression between them. To investigate the history of the species complex, we used whole-genome reference assemblies, as well as dozens of resequenced individuals from the field. Results We observed a large amount of phylogenetic discordance between trees generated from the autosomes and X chromosome. The autosomes, which make up the majority of the genome, overwhelmingly supported the grouping of the three major vectors of malaria, An. gambiae , An. coluzzii , and An. arabiensis . In stark contrast, the X chromosome strongly supported the grouping of An. arabiensis with a species that plays no role in malaria transmission, An. quadriannulatus . Although the whole-genome consensus phylogeny unequivocally agrees with the autosomal topology, we found that the topology most often located on the X chromosome follows the historical species branching order, with pervasive introgression on the autosomes producing relationships that group the three highly anthropophilic species together. With knowledge of the correct species branching order, we are further able to uncover introgression between another species pair, as well as a complex history of balancing selection, introgression, and local adaptation of a large autosomal inversion that confers aridity tolerance. Conclusion We identify the correct species branching order of the An. gambiae species complex, resolving a contentious phylogeny. Notably, lineages leading to the principal vectors of human malaria were among the first in the complex to radiate and are not most closely related to each other. Pervasive autosomal introgression between these human malaria vectors, including nonsister vector species, suggests that traits enhancing vectorial capacity can be acquired not only through de novo mutation but also through a more rapid process of interspecific genetic exchange. Time-lapse photographs of an adult anopheline mosquito emerging from its pupal case. RELATED ITEMS IN Science D. E. Neafsey et al ., Science 347 , 1258522 (2015)
0
Citation601
0
Save
0

Improved reference genome of Aedes aegypti informs arbovirus vector control

Benjamin Matthews et al.Nov 1, 2018
+68
S
O
B
Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector. An improved, fully re-annotated Aedes aegypti genome assembly (AaegL5) provides insights into the sex-determining M locus, chemosensory systems that help mosquitoes to hunt humans and loci involved in insecticide resistance and will help to generate intervention strategies to fight this deadly disease vector.
0
Citation493
0
Save
0

Field-Caught Permethrin-Resistant Anopheles gambiae Overexpress CYP6P3, a P450 That Metabolises Pyrethroids

Pie Müller et al.Nov 27, 2008
+9
B
E
P
Insects exposed to pesticides undergo strong natural selection and have developed various adaptive mechanisms to survive. Resistance to pyrethroid insecticides in the malaria vector Anopheles gambiae is receiving increasing attention because it threatens the sustainability of malaria vector control programs in sub-Saharan Africa. An understanding of the molecular mechanisms conferring pyrethroid resistance gives insight into the processes of evolution of adaptive traits and facilitates the development of simple monitoring tools and novel strategies to restore the efficacy of insecticides. For this purpose, it is essential to understand which mechanisms are important in wild mosquitoes. Here, our aim was to identify enzymes that may be important in metabolic resistance to pyrethroids by measuring gene expression for over 250 genes potentially involved in metabolic resistance in phenotyped individuals from a highly resistant, wild A. gambiae population from Ghana. A cytochrome P450, CYP6P3, was significantly overexpressed in the survivors, and we show that the translated enzyme metabolises both alpha-cyano and non–alpha-cyano pyrethroids. This is the first study to demonstrate the capacity of a P450 identified in wild A. gambiae to metabolise insecticides. The findings add to the understanding of the genetic basis of insecticide resistance in wild mosquito populations.
0
Paper
Citation332
0
Save
0

Improved Aedes aegypti mosquito reference genome assembly enables biological discovery and vector control

Benjamin Matthews et al.Dec 29, 2017
+69
R
T
B
Female Aedes aegypti mosquitoes infect hundreds of millions of people each year with dangerous viral pathogens including dengue, yellow fever, Zika, and chikungunya. Progress in understanding the biology of this insect, and developing tools to fight it, has been slowed by the lack of a high-quality genome assembly. Here we combine diverse genome technologies to produce AaegL5, a dramatically improved and annotated assembly, and demonstrate how it accelerates mosquito science and control. We anchored the physical and cytogenetic maps, resolved the size and composition of the elusive sex-determining “M locus”, significantly increased the known members of the glutathione-S-transferase genes important for insecticide resistance, and doubled the number of chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites. Using high-resolution QTL and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. We predict that AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly arboviral vector.
0
Citation23
0
Save
0

A male steroid controls female sexual behaviour in the malaria mosquito

Duo Peng et al.Jul 6, 2022
+8
E
E
D
Insects, unlike vertebrates, are widely believed to lack male-biased sex steroid hormones1. In the malaria mosquito Anopheles gambiae, the ecdysteroid 20-hydroxyecdysone (20E) appears to have evolved to both control egg development when synthesized by females2 and to induce mating refractoriness when sexually transferred by males3. Because egg development and mating are essential reproductive traits, understanding how Anopheles females integrate these hormonal signals can spur the design of new malaria control programs. Here we reveal that these reproductive functions are regulated by distinct sex steroids through a sophisticated network of ecdysteroid-activating/inactivating enzymes. We identify a male-specific oxidized ecdysteroid, 3-dehydro-20E (3D20E), which safeguards paternity by turning off female sexual receptivity following its sexual transfer and activation by dephosphorylation. Notably, 3D20E transfer also induces expression of a reproductive gene that preserves egg development during Plasmodium infection, ensuring fitness of infected females. Female-derived 20E does not trigger sexual refractoriness but instead licenses oviposition in mated individuals once a 20E-inhibiting kinase is repressed. Identifying this male-specific insect steroid hormone and its roles in regulating female sexual receptivity, fertility and interactions with Plasmodium parasites suggests the possibility for reducing the reproductive success of malaria-transmitting mosquitoes.
0
Citation9
0
Save
0

Transinfection of Wolbachia wAlbB into Culex quinquefasciatus mosquitoes does not alter vector competence for Hawaiian avian malaria (Plasmodium relictum GRW4)

A. Kilpatrick et al.Feb 16, 2024
+6
I
C
A
Avian malaria is expanding upslope with warmer temperatures and driving multiple species of Hawaiian birds towards extinction. Methods to reduce malaria transmission are urgently needed to prevent further declines. Releasing Wolbachia-infected incompatible male mosquitoes suppress mosquito populations and releasing Wolbachia-infected female mosquitoes could reduce pathogen transmission if the Wolbachia strain reduced vector competence. We cleared Culex quinquefasciatus of their natural Wolbachia pipientis wPip infection and transinfected them with Wolbachia wAlbB isolated from Aedes albopictus. We show that wAlbB infection was transmitted transovarially, and demonstrate cytoplasmic incompatibility with wild-type mosquitoes infected with wPip from Oahu and Maui, Hawaii. We measured vector competence for avian malaria, Plasmodium relictum, lineage GRW4, of seven mosquito lines (two with wAlbB; three with natural wPip infection, and two cleared of Wolbachia infection) by allowing them to feed on canaries infected with recently collected field isolates of Hawaiian P. relictum. We tested 73 groups (Ntotal = 1176) of mosquitoes for P. relictum infection in abdomens and disseminated (thorax) infections 6-14 days after feeding across a range of parasitemias from 0.028% to 2.49%, and a smaller subset of salivary glands. We found no measurable effect of Wolbachia on any endpoint, but strong effects of parasitemia, days post feeding, and mosquito strain on both abdomen infection prevalence and disseminated infection prevalence. These results suggest that releasing male wAlbB-infected C. quinquefasciatus mosquitoes could suppress wPip-infected mosquito populations, but would have little positive or negative impact on mosquito vector competence for P. relictum if wAlbB became established in local mosquito populations. More broadly, the lack of Wolbachia effects on vector competence we observed highlights the variable impacts of both native and transfected Wolbachia infections in mosquitoes.
0
Citation2
0
Save
0

JNK signaling regulates oviposition in the malaria vector Anopheles gambiae

Matthew Peirce et al.Mar 15, 2020
+9
E
S
M
The reproductive fitness of the Anopheles gambiae mosquito represents a promising target to prevent malaria transmission. The ecdysteroid hormone 20-hydroxyecdysone (20E), transferred from male to female during copulation, is key to An. gambiae reproductive success as it licenses females to oviposit eggs developed after blood feeding. Here we show that 20E-triggered oviposition in these mosquitoes is regulated by the stress- and immune-responsive c-Jun N-terminal kinase (JNK). The heads of mated females exhibit a transcriptional signature reminiscent of a JNK-dependent wounding response while mating - or injection of virgins with exogenous 20E - selectively activates JNK in the same tissue. RNAi-mediated depletion of JNK pathway components inhibits oviposition in mated females, whereas JNK activation by silencing the JNK phosphatase puckered induces egg laying in virgins. Together, these data identify JNK as a potential conduit linking stress responses and reproductive success in the most important vector of malaria.
9

A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection

Perrine Marcenac et al.Aug 21, 2020
+10
E
W
P
Abstract Anopheles mosquitoes have transmitted Plasmodium parasites for millions of years, yet it remains unclear whether they suffer fitness costs to infection. Here we report that the fecundity of virgin and mated females of two important vectors— Anopheles gambiae and Anopheles stephensi —is not affected by infection with Plasmodium falciparum , demonstrating that these human malaria parasites do not inflict reproductive costs to their natural mosquito hosts. Additionally, parasite development is not impacted by mating status. However, in field studies using different P. falciparum isolates in Anopheles coluzzii , we find that Mating-Induced Stimulator of Oogenesis ( MISO ), a female reproductive gene strongly induced after mating by the sexual transfer of the steroid hormone 20-hydroxyecdysone (20E), protects females from incurring fecundity costs to infection. MISO -silenced females produce fewer eggs as they become increasingly infected with P. falciparum , while parasite development is not impacted by this gene silencing. Interestingly, previous work had shown that sexual transfer of 20E has specifically evolved in Cellia species of the Anopheles genus, driving the co-adaptation of MISO. Our data therefore suggest that evolution of male-female sexual interactions may have promoted Anopheles tolerance to P. falciparum infection in the Cellia subgenus, which comprises the most important malaria vectors. Author summary Plasmodium falciparum , the deadliest form of human malaria, is transmitted when female Anopheles mosquitoes bite people and take a blood meal in order to develop eggs. To date, it is still poorly understood whether Anopheles mosquitoes that get infected with P. falciparum suffer fitness costs. Here, we find that the number of eggs produced by Anopheles gambiae and Anopheles stephensi females is not affected by P. falciparum infection, and that the mating status of the mosquitoes does not impact the parasite. However, in field experiments infecting a related species, Anopheles coluzzii , with P. falciparum using blood from donors in Burkina Faso, we find that interfering with the expression of a gene normally triggered by the sexual transfer of the steroid hormone 20-hydroxyecdysone induces increasing costs to egg development as females become more infected with P. falciparum , with no impacts on the parasite. The results of our study suggest that pathways triggered by mating may help Anopheles prevent reproductive costs associated with P. falciparum infection, providing new insights into evolutionary strategies adopted by anophelines in the face of a longstanding association with Plasmodium parasites.
0

Mark-release-recapture of male Aedes aegypti (Diptera: Culicidae): use of rhodamine B to estimate movement, mating and population parameters in preparation for an incompatible male program

Brendan Trewin et al.Nov 4, 2020
+7
B
D
B
Abstract Rapid advances in biological and digital technologies are revolutionizing the population control of invasive disease vectors such as Aedes aegypti . Methods such as the sterile and incompatible insect techniques (SIT/IIT) rely on modified males to seek out and successfully mate with females, and in doing so outcompete the wild male population for mates. Currently, these interventions infer the success of mating interactions between male and female insects through area-wide population surveillance and observations of mating competitiveness are rare. Furthermore, little is known about male Ae. aegypti behaviours and biology in field settings. In preparation for a large, community scale IIT program, we undertook a series of mark-release-recapture experiments using rhodamine B to mark male Ae. aegypti sperm and measure mating interactions with females. We also developed the Spatial and Temporally Evolving Isotropic Kernel (STEIK) framework to assist researchers to estimate the movement of individuals through space and time. Results showed that ~40% of daily females captured were unmated, suggesting interventions will need to release males regularly to be effective at suppressing Ae. aegypti populations. Males moved rapidly through the landscape, particularly when released during the night. Although males moved further than what is typically observed in females of the species, survival was considerably lower. These unique insights will lead to a greater understanding of mating interactions in wild insect populations and lay the foundation for robust suppression strategies in the future. Author Summary Modern scientific techniques for controlling populations of the dengue vector, Aedes aegypti , utilize the mating biology of adult male mosquitoes to achieve suppression through a sterilization process. As the study of Ae. aegypti control has typically focused on adult female mosquitoes, knowledge on male movement, survival and mating interactions in the field is lacking. Here we undertook several mark-release-recapture experiments on adult male Ae. aegypti in Innisfail, Australia, and measured important biological parameters. For the first time in large field experiments, we employed rhodamine B as a marker that when fed to adult males, identified both marked males and the wild females they mated with. We observed males moving further through the landscape, but surviving for a shorter period, than previous measurements undertaken on females in a field setting. A high proportion (~40%) of unmated females suggests individuals are constantly available for mating. As such, sterile male strategies may need to release at regular intervals to achieve effective population suppression. The unique insights provided by this study will assist in designing future sterile male field interventions.