JP
Jeffrey Powell
Author with expertise in Insect Symbiosis and Microbial Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
2,236
h-index:
65
/
i10-index:
178
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transgenic Aedes aegypti Mosquitoes Transfer Genes into a Natural Population

Benjamin Evans et al.Sep 10, 2019
+7
A
P
B
In an attempt to control the mosquito-borne diseases yellow fever, dengue, chikungunya, and Zika fevers, a strain of transgenically modified Aedes aegypti mosquitoes containing a dominant lethal gene has been developed by a commercial company, Oxitec Ltd. If lethality is complete, releasing this strain should only reduce population size and not affect the genetics of the target populations. Approximately 450 thousand males of this strain were released each week for 27 months in Jacobina, Bahia, Brazil. We genotyped the release strain and the target Jacobina population before releases began for >21,000 single nucleotide polymorphisms (SNPs). Genetic sampling from the target population six, 12, and 27-30 months after releases commenced provides clear evidence that portions of the transgenic strain genome have been incorporated into the target population. Evidently, rare viable hybrid offspring between the release strain and the Jacobina population are sufficiently robust to be able to reproduce in nature. The release strain was developed using a strain originally from Cuba, then outcrossed to a Mexican population. Thus, Jacobina Ae. aegypti are now a mix of three populations. It is unclear how this may affect disease transmission or affect other efforts to control these dangerous vectors. These results highlight the importance of having in place a genetic monitoring program during such releases to detect un-anticipated outcomes.
0
Citation894
0
Save
0

ENZYME VARIABILITY IN THE DROSOPHILA WILLISTONI GROUP. IV. GENIC VARIATION IN NATURAL POPULATIONS OF DROSOPHILA WILLISTONI

Francisco Ayala et al.Jan 1, 1972
+2
M
J
F
ABSTRACT We describe allelic variation at 28 gene loci in natural populations of D. willistoni. Seventy samples were studied from localities extending from Mexico and Florida, through Central America, the West Indies, and tropical South America, down to South Brazil. At least several hundred, and often several thousand, genomes were sampled for each locus. We have discovered a great deal of genetic variation. On the average, 58% loci are polymorphic in a given population. (A locus is considered polymorphic when the frequency of the most common allele is no greater than 0.95). An individual fly is heterozygous, on the average, at 18.4% loci.—Concerning the pattern of the variation, the most remarkable finding is the similarity of the configuration of allelic frequencies from locality to locality throughout the distribution of the species. Our observations support the conclusion that balancing natural selection is the major factor responsible for the considerable genetic variation observed in D. willistoni.
0
Citation823
0
Save
0

Improved reference genome of Aedes aegypti informs arbovirus vector control

Benjamin Matthews et al.Nov 1, 2018
+68
S
O
B
Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector. An improved, fully re-annotated Aedes aegypti genome assembly (AaegL5) provides insights into the sex-determining M locus, chemosensory systems that help mosquitoes to hunt humans and loci involved in insecticide resistance and will help to generate intervention strategies to fight this deadly disease vector.
0
Citation493
0
Save
0

Improved Aedes aegypti mosquito reference genome assembly enables biological discovery and vector control

Benjamin Matthews et al.Dec 29, 2017
+69
R
T
B
Female Aedes aegypti mosquitoes infect hundreds of millions of people each year with dangerous viral pathogens including dengue, yellow fever, Zika, and chikungunya. Progress in understanding the biology of this insect, and developing tools to fight it, has been slowed by the lack of a high-quality genome assembly. Here we combine diverse genome technologies to produce AaegL5, a dramatically improved and annotated assembly, and demonstrate how it accelerates mosquito science and control. We anchored the physical and cytogenetic maps, resolved the size and composition of the elusive sex-determining “M locus”, significantly increased the known members of the glutathione-S-transferase genes important for insecticide resistance, and doubled the number of chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites. Using high-resolution QTL and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. We predict that AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly arboviral vector.
0
Citation23
0
Save
68

Dating the origin and spread of specialization on human hosts in Aedes aegypti mosquitoes

Noah Rose et al.Sep 13, 2022
+7
M
A
N
Abstract The globally invasive mosquito subspecies Aedes aegypti aegypti is a highly effective vector of human arboviruses because it specializes in biting humans and breeding in human habitats. Recent work suggests that specialization first arose as an adaptation to long, hot dry seasons in the West African Sahel, where Ae. aegypti is forced to rely on human-stored water for breeding. However, rainfall patterns in this region have changed dramatically over the past 10-20 thousand years, and we do not yet know exactly when specialization occurred. Here we use whole-genome cross-coalescent analysis to date the emergence of human specialist populations in the Sahel and thus further probe the climate hypothesis. Importantly, we take advantage of the known migration of human-specialist populations out of Africa during the Atlantic Slave Trade to calibrate the coalescent clock and thus obtain a more precise estimate of the older evolutionary event than would otherwise be possible. We find that human-specialist mosquitoes diverged rapidly from ecological generalists approximately 5,000 years ago, which corresponds to the end of the African Humid Period—a time when the Sahara dried and water stored by humans became a uniquely stable, aquatic niche in the Sahel. We also use population genomic analyses to date a previously observed influx of human-specialist alleles into major West African cities, where mosquitoes tend to be more attracted to humans than in nearby rural populations regardless of climate. In this case, the characteristic length of tracts of human-specialist ancestry present on a generalist genetic background in Kumasi, Ghana and Ouagadougou, Burkina Faso suggests the change in behavior occurred during rapid urbanization over the last 20-40 years. Taken together, we show that the timing and ecological context of two previously observed shifts towards human biting in Ae. aegypti differ; climate was likely the original driver, but urbanization has become increasingly important in recent decades. Understanding the changing relationship between mosquitoes and humans over time is critical for predicting and managing burdens of mosquito-borne disease.
68
Paper
Citation2
0
Save
5

Oviposition of the mosquito Aedes aegypti in forest and domestic habitats in Africa

Siyang Xia et al.Jul 9, 2020
+5
J
H
S
Abstract The theory of ecological divergence provides a useful framework to understand the adaptation of many species to anthropogenic (‘domestic’) habitats. The mosquito Aedes aegypti , a global vector of several arboviral diseases, presents an excellent study system. Ae. aegypti originated in African forests, but the populations that invaded other continents have specialized in domestic habitats. In its African native range, the species can be found in both forest and domestic habitats like villages. A crucial behavioral change between mosquitoes living in different habitats is their oviposition choices. Forest Ae. aegypti lay eggs in natural water containers like tree holes, while their domestic counterparts heavily rely on artificial containers such as plastic buckets. These habitat-specific containers likely have different environmental conditions, which could drive the incipient divergent evolution of oviposition in African Ae. aegypti . To examine this hypothesis, we conducted field research in two African locations, La Lopé, Gabon and Rabai, Kenya, where Ae. aegypti live in both forests and nearby villages. We first characterized a series of environmental conditions of natural oviposition sites, including physical characteristics, microbial density, bacterial composition, and volatile profiles. Our data showed that in both locations, environmental conditions of oviposition sites did differ between habitats. To examine potential behavioral divergence, we then conducted field and laboratory oviposition choice experiments to compare the oviposition preference of forest and village mosquitoes. The field experiment suggested that forest mosquitoes readily accepted artificial containers. In laboratory oviposition assays, forest and village mosquito colonies did not show a differential preference towards several conditions that featured forest versus village oviposition sites. Collectively, there is little evidence from our study that environmental differences lead to strong and easily measurable divergence in oviposition behavior between Ae. aegypti that occupy nearby forest and domestic habitats within Africa, despite clear divergence between African and non-African Ae. aegypti .
5
Paper
Citation1
0
Save
0

Climate and urbanization drive mosquito preference for humans

Noah Rose et al.Feb 13, 2020
+16
A
M
N
The majority of mosquito-borne illness is spread by a few mosquito species that have evolved to specialize in biting humans, yet the precise causes of this behavioral shift are poorly understood. We address this gap in the arboviral vector Aedes aegypti . We first characterize the behaviour of mosquitoes from 27 sites scattered across the species' ancestral range in sub-Saharan Africa, revealing previously unrecognized diversity in female preference for human versus animal odor. We then use modelling to show that this diversity can be almost fully predicted by two ecological factors -- dry season intensity and human population density. Finally we integrate this information with whole genome sequence data from 345 individual mosquitoes to identify a single underlying ancestry component linked to human preference, with genetic changes concentrated in a few key chromosomal regions. Our findings strongly suggest that human-biting in this important disease vector originally evolved as a by-product of breeding in human-stored water in areas where doing so provided the only means to survive the long, hot dry season. Our model also predicts that changes in human population density are likely to drive future mosquito evolution. Rapid urbanization may drive a shift to human-biting in many cities across Africa by 2050.
0

Sequencing 1206 genomes reveals origin and movement ofAedes aegyptidriving increased dengue risk

Jacob Crawford et al.Jul 24, 2024
+24
S
D
J
Abstract The number of dengue cases worldwide has increased ten-fold over the past decade as Aedes aegypti , the primary vector of this disease, thrives and expands its distribution, revealing limitations to current control methods. To better understand how Ae. aegypti evolved from a forest dwelling, generalist species to a highly anthropophilic urban species and the impact of contemporary gene flow on the future of dengue control, we sequenced 1,206 genomes from mosquitoes collected at 74 locations around the globe. Here we show that after evolving a preference for humans in the Sahel region of West Africa, the origin of the fully domesticated, anthropophilic subspecies Ae. aegypti aegypti ( Aaa ) occurred in the Americas during the Atlantic Slave Trade era and was followed by its explosive expansion around the globe. In recent decades, Aaa has invaded coastal Africa, the ancestral home range, introducing insecticide resistance mutations and an affinity for human hosts. Evidence of back-to-Africa migration is found in regions with recent dengue outbreaks, raising concern that global movement of Aaa could increase transmission risk of arboviruses including dengue in urban Africa. These data provide a platform to further study this important mosquito vector species and underscore developing complexity in the fight to limit the spread of dengue, Zika, and chikungunya diseases.
0

Improved reference genome of the arboviral vector Aedes albopictus

Umberto Palatini et al.Feb 28, 2020
+27
L
R
U
The Asian tiger mosquito Aedes albopictus is globally expanding and has become the main vector for human arboviruses in Europe. Here we present AalbF2, a dramatically improved assembly of the Ae. albopictus genome that has revealed widespread viral insertions, novel microRNAs and piRNA clusters, the sex determining locus, new immunity genes, and has enabled genome-wide studies of geographically diverse Ae. albopictus populations and analyses of the developmental and stage-dependent network of expression data. Additionally, we built the first physical map for this species with 75% of the assembled genome anchored to the chromosomes. These up-to-date resources of the genome provide a foundation to improve understanding of the adaptation potential and the epidemiological relevance of this species and foster the development of innovative control measures.