HH
Hulda Haraldsdóttir
Author with expertise in Metabolic Engineering and Synthetic Biology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1,992
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0

Laurent Heirendt et al.Feb 20, 2019
+50
T
S
L
Constraint-based reconstruction and analysis (COBRA) provides a molecular mechanistic framework for integrative analysis of experimental molecular systems biology data and quantitative prediction of physicochemically and biochemically feasible phenotypic states. The COBRA Toolbox is a comprehensive desktop software suite of interoperable COBRA methods. It has found widespread application in biology, biomedicine, and biotechnology because its functions can be flexibly combined to implement tailored COBRA protocols for any biochemical network. This protocol is an update to the COBRA Toolbox v.1.0 and v.2.0. Version 3.0 includes new methods for quality-controlled reconstruction, modeling, topological analysis, strain and experimental design, and network visualization, as well as network integration of chemoinformatic, metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code integration also enables an expansion in COBRA application scope via high-precision, high-performance, and nonlinear numerical optimization solvers for multi-scale, multi-cellular, and reaction kinetic modeling, respectively. This protocol provides an overview of all these new features and can be adapted to generate and analyze constraint-based models in a wide variety of scenarios. The COBRA Toolbox v.3.0 provides an unparalleled depth of COBRA methods.
0

A community-driven global reconstruction of human metabolism

Ines Thiele et al.Mar 3, 2013
+43
R
N
I
The metabolic modeling community has curated information from five models to create the most comprehensive model of human metabolism to date. Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ∼2× more reactions and ∼1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/ .
0
Paper
Citation986
0
Save
4

Mechanistic model-driven exometabolomic characterisation of human dopaminergic neuronal metabolism

German Preciat et al.Jul 1, 2021
+22
S
B
G
Abstract Starting with a comprehensive generic reconstruction of human metabolism, we generated high-quality, constraint-based, genome-scale, cell-type and condition specific models of metabolism in human dopaminergic neurons, the cell type most vulnerable to degeneration in Parkinson ’ s disease. They are a synthesis of extensive manual curation of the biochemical literature on neuronal metabolism, together with novel, quantitative, transcriptomic and targeted exometabolomic data from human stem cell-derived, midbrainspecific, dopaminergic neurons in vitro . Thermodynamic constraint-based modelling enabled qualitatively accurate and moderately quantitatively accurate prediction of dopaminergic neuronal metabolite exchange fluxes, including predicting the consequences of metabolic perturbations in a manner also consistent with literature on monogenic mitochondrial Parkinson ’ s disease. These dopaminergic neurons models provide a foundation for a quantitative systems biochemistry approach to metabolic dysfunction in Parkinson ’ s disease. Moreover, the plethora of novel mathematical and computational approaches required to develop them are generalisable to study any other disease associated with metabolic dysfunction.
4
Citation6
0
Save
0

The Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease

Alberto Noronha et al.May 15, 2018
+31
Y
J
A
A multitude of factors contribute to complex diseases and can be measured with "omics" methods. Databases facilitate data interpretation for underlying mechanisms. Here, we describe the Virtual Metabolic Human (VMH, http://vmh.life) database encapsulating current knowledge of human metabolism within five interlinked resources "Human metabolism", "Gut microbiome", "Disease", "Nutrition", and "ReconMaps". The VMH captures 5,180 unique metabolites, 17,730 unique reactions, 3,288 human genes, 255 Mendelian diseases, 818 microbes, 632,685 microbial genes, and 8,790 food items. The VMH's unique features are i) the hosting the metabolic reconstructions of human and gut microbes amenable for metabolic modeling; ii) seven human metabolic maps for data visualization; iii) a nutrition designer; iv) a user-friendly webpage and application-programming interface to access its content; and v) user feedback option for community engagement. We demonstrate with four examples the VMH's utility. The VMH represents a novel, interdisciplinary database for data interpretation and hypothesis generation to the biomedical community.