DY
Darwin Yang
Author with expertise in Neural Interface Technology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
20
h-index:
13
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Imaging Striatal Dopamine Release Using a Non-Genetically Encoded Near-Infrared Fluorescent Catecholamine Nanosensor

Abraham Beyene et al.Jul 3, 2018
+8
J
K
A
Abstract Neuromodulation plays a critical role in brain function in both health and disease. New optical tools, and their validation in biological tissues, are needed that can image neuromodulation with high spatial and temporal resolution, which will add an important new dimension of information to neuroscience research. Here, we demonstrate the use of a catecholamine nanosensor with fluorescent emission in the 1000-1300 nm near-infrared window to measure dopamine transmission in ex vivo brain slices. These near-infrared catecholamine nanosensors (nIRCats) represent a broader class of nanosensors that can be synthesized from non-covalent conjugation of single wall carbon nanotubes (SWNT) with single strand oligonucleotides. We show that nIRCats can be used to detect catecholamine efflux in brain tissue driven by both electrical stimulation or optogenetic stimulation. Spatial analysis of electrically-evoked signals revealed dynamic regions of interest approximately 2 microns in size in which transients scaled with simulation intensity. Optogenetic stimulation of dopaminergic terminals produced similar transients, whereas optogenetic stimulation of glutamatergic terminals showed no effect on nIRCat signal. Bath application of nomifensine prolonged nIRCat fluorescence signal, consistent with reuptake blockade of dopamine. We further show that the chemically synthetic molecular recognition elements of nIRCats permit measurement of dopamine dynamics in the presence of dopamine receptor agonists and antagonists. These nIRCat nanosensors may be advantageous for future use because i) they do not require virus delivery, gene delivery, or protein expression, ii) their near-infrared fluorescence facilitates imaging in optically scattering brain tissue and is compatible for use in conjunction with other optical neuroscience tool sets, iii) the broad availability of unique near-infrared colors have the potential for simultaneous detection of multiple neurochemical signals, and iv) they are compatible with pharmacology. Together, these data suggest nIRCats and other nanosensors of this class can serve as versatile new optical tools to report dynamics of extracellular neuromodulation in the brain.
0
Citation9
0
Save
0

Protein Corona Composition and Dynamics on Carbon Nanotubes in Blood Plasma and Cerebrospinal Fluid

Rebecca Pinals et al.Jan 14, 2020
+5
D
D
R
Abstract When a nanoparticle enters a biological environment, the surface is rapidly coated with proteins to form a “protein corona”. Presence of the protein corona surrounding the nanoparticle has significant implications for applying nanotechnologies within biological systems, affecting outcomes such as biodistribution and toxicity. Herein, we measure protein corona formation on single-stranded DNA wrapped single-walled carbon nanotubes (ssDNA-SWCNTs), a high-aspect ratio nanoparticle ideal for sensing and delivery applications, and polystyrene nanoparticles, a model nanoparticle system. The protein corona of each nanoparticle is studied in human blood plasma and cerebrospinal fluid. We characterize corona composition by proteomic mass spectrometry to determine abundant and differentially enriched vs. depleted corona proteins. High-binding corona proteins on ssDNA-SWCNTs include proteins involved in lipid binding and transport (clusterin and apolipoprotein A-I), complement activation (complement C3), and blood coagulation (fibrinogen). Of note, albumin is the most common blood protein (55% w/v), yet exhibits low-binding affinity towards ssDNA-SWCNTs, displaying 1300-fold lower bound concentration relative to native plasma. We investigate the role of electrostatic and entropic interactions driving selective protein corona formation, and find that hydrophobic interactions drive inner corona formation, while shielding of electrostatic interactions allows for outer corona formation. Lastly, we study real-time binding of proteins on ssDNA-SWCNTs and find relative agreement between proteins that are enriched and bind strongly, such as fibrinogen, and proteins that are depleted and bind marginally, such as albumin. Interestingly, certain proteins express contrary behavior in single-protein experiments than within the whole biofluid, highlighting the importance of cooperative mechanisms driving selective corona adsorption on the SWCNT surface. Knowledge of the protein corona composition, dynamics, and structure informs translation of engineered nanoparticles from in vitro design to effective in vivo application.
0
Citation6
0
Save
2

Carbon nanotube biocompatibility in plants is determined by their surface chemistry

Eduardo González‐Grandío et al.Jul 30, 2021
+2
C
G
E
Abstract Agriculture faces significant global challenges including climate change and an increasing food demand due to a growing population. Addressing these challenges will require the adoption of transformative innovations into biotechnology practice, such as nanotechnology. Recently, nanomaterials have emerged as unmatched tools for their use as biosensors, or as biomolecule delivery vehicles. Despite their increasingly prolific use, plant-nanomaterial interactions remain poorly characterized, drawing into question the breadth of their utility and their broader environmental compatibility. Herein, we characterize Arabidopsis thaliana transcriptional response to single walled carbon nanotubes (SWNTs) with two different surface chemistries commonly used for biosensing and nucleic acid delivery: oligonucleotide adsorbed-pristine SWNTs, and polyethyleneimine-SWNTs loaded with plasmid DNA (PEI-SWNTs), both introduced by leaf infiltration. We observed that SWNTs elicit a mild stress response almost undistinguishable from the infiltration process, indicating that these nanomaterials are well-tolerated by the plant. However, PEI-SWNTs induce a much larger transcriptional reprogramming that involves stress, immunity, and senescence responses. PEI-SWNT-induced transcriptional profile is very similar to that of mutant plants displaying a constitutive immune response or treated with stress-priming agrochemicals. We selected molecular markers from our transcriptomic analysis and identified PEI as the main cause of this reaction. We show that PEI-SWNT response is concentration-dependent and, when persistent over time, leads to cell death. We probed a panel of PEI variant-functionalized SWNTs across two plant species and identified biocompatible SWNT surface functionalizations. Our results highlight the importance of nanoparticle surface chemistry on their biocompatibility and will facilitate the use of functionalized nanomaterials for agricultural improvement. Significance statement Nanomaterials can be used in agriculture as biosensors to monitor plant health, as fertilizers or growth regulators, and as delivery vehicles for genome engineering reagents to improve crops. However, the interactions between nanoparticles and plant cells are not well understood. Here, we characterize the plant transcriptomic response to single-walled carbon nanotubes (SWNTs) commonly used for sensing and nucleic acid delivery. While SWNTs themselves are well tolerated by plants, SWNTs surface-functionalized with positively charged polymers become toxic and produce cell death. We identify molecular markers of this toxic response to create biocompatible SWNT formulations. These results highlight the significance of nanoparticle surface chemistry, perhaps more than the nanoparticles themselves, on downstream interactions of nanoparticles with the environment.
2
Citation4
0
Save
18

Transcriptomic and morphological response of SIM-A9 mouse microglia to carbon nanotube neuro-sensors

Darwin Yang et al.Jul 1, 2020
+2
J
S
D
Abstract Single-walled carbon nanotubes (SWCNT) are used in neuroscience for deep-brain imaging, neuron activity recording, measuring brain morphology, and imaging neuromodulation. However, the extent to which SWCNT-based probes impact brain tissue is not well understood. Here, we study the impact of (GT) 6 -SWCNT dopamine nanosensors on SIM-A9 mouse microglial cells and show SWCNT-induced morphological and transcriptomic changes in these brain immune cells. Next, we introduce a strategy to passivate (GT) 6 -SWCNT nanosensors with PEGylated phospholipids to improve both biocompatibility and dopamine imaging quality. We apply these passivated dopamine nanosensors to image electrically stimulated striatal dopamine release in acute mouse brain slices, and show that slices labeled with passivated nanosensor exhibit higher fluorescence response to dopamine and measure more putative dopamine release sites. Hence, this facile modification to SWCNT-based dopamine probes provides immediate improvements to both biocompatibility and dopamine imaging functionality with an approach that is readily translatable to other SWCNT-based neurotechnologies.
18
Citation1
0
Save
0

High Throughput Evolution of Near Infrared Serotonin Nanosensors

Sanghwa Jeong et al.Jun 18, 2019
+2
A
D
S
Release and reuptake of neuromodulator serotonin is central to mood regulation and neuropsychiatric disorders, whereby imaging serotonin is of fundamental importance to study the brain serotonin signaling system. We introduce a reversible near infrared nanosensor for serotonin (nIRHT), for which synthetic molecular recognition toward serotonin is systematically evolved from ssDNA-carbon nanotube constructs generated from large libraries of 6.9e10 unique ssDNA sequences. nIRHT produces a 200% fluorescence enhancement upon exposure to serotonin with a Kd = 6.3 μM affinity. nIRHT shows selective responsivity towards serotonin over serotonin analogs, metabolites, and receptor-targeting drugs, and a 5-fold increased affinity for serotonin over dopamine. Further, nIRHT can be introduced into the brain extracellular space in acute slice, and can be used to image exogenous serotonin reversibly. Our results suggest evolution of nanosensors could be generically implemented to rapidly develop other neuromodulator probes, and that these probes can image neuromodulator dynamics at spatiotemporal scales compatible with endogenous neuromodulation.
0

Corona exchange dynamics on carbon nanotubes by multiplexed fluorescence monitoring

Rebecca Pinals et al.Sep 8, 2019
+2
A
D
R
Noncovalent adsorption of DNA on nanoparticles has led to their widespread implementation as gene delivery tools and optical probes. Yet, the behavior and stability of DNA-nanoparticle complexes once applied in biomolecule-rich, in vivo environments remains unpredictable, whereby biocompatibility testing usually occurs in serum. Here, we demonstrate time-resolved measurements of exchange dynamics between solution-phase and adsorbed corona-phase DNA and protein biomolecules on single-walled carbon nanotubes (SWCNTs). We capture real-time binding of fluorophore-labeled biomolecules, utilizing the SWCNT surface as a fluorescence quencher, and apply this corona exchange assay to study protein corona dynamics on ssDNA-SWCNT-based dopamine sensors. We study exchange of two blood proteins, albumin and fibrinogen, adsorbing to and competitively displacing (GT)6 vs. (GT)15 ssDNA from ssDNA-SWCNTs. We find that (GT)15 binds to SWCNTs with a higher affinity than (GT)6 and that fibrinogen interacts with ssDNA-SWCNTs more strongly than albumin. Albumin and fibrinogen cause a 52.2% and 78.2% attenuation of the dopamine nanosensor response, coinciding with 0.5% and 3.7% desorption of (GT)6, respectively. Concurrently, the total surface-adsorbed fibrinogen mass is 168% greater than that of albumin. Binding profiles are fit to a competitive surface exchange model which recapitulates the experimental observation that fibrinogen has a higher affinity for SWCNTs than albumin, with a fibrinogen on-rate constant 1.61-fold greater and an off-rate constant 0.563-fold smaller than that of albumin. Our methodology presents a generic route to assess real-time corona exchange on nanoparticles in solution phase, and more broadly motivates testing of nanoparticle-based technologies in blood plasma rather than the more ubiquitously-tested serum conditions.