MV
Marijn Verkerk
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
843
h-index:
17
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Disease variants alter transcription factor levels and methylation of their binding sites

Marc Bonder et al.Dec 5, 2016
+53
M
F
M
Peter 't Hoen, Lude Franke, Bastiaan Heijmans and colleagues present a combined analysis of methylome and transcriptome data from a large collection of whole-blood samples to infer the downstream effects of disease-associated variants. They identify a large number of trait-associated SNPs influencing methylation of CpG sites in trans, providing insights into the downstream functional effects of many disease-associated variants. Most disease-associated genetic variants are noncoding, making it challenging to design experiments to understand their functional consequences1,2. Identification of expression quantitative trait loci (eQTLs) has been a powerful approach to infer the downstream effects of disease-associated variants, but most of these variants remain unexplained3,4. The analysis of DNA methylation, a key component of the epigenome5,6, offers highly complementary data on the regulatory potential of genomic regions7,8. Here we show that disease-associated variants have widespread effects on DNA methylation in trans that likely reflect differential occupancy of trans binding sites by cis-regulated transcription factors. Using multiple omics data sets from 3,841 Dutch individuals, we identified 1,907 established trait-associated SNPs that affect the methylation levels of 10,141 different CpG sites in trans (false discovery rate (FDR) < 0.05). These included SNPs that affect both the expression of a nearby transcription factor (such as NFKB1, CTCF and NKX2-3) and methylation of its respective binding site across the genome. Trans methylation QTLs effectively expose the downstream effects of disease-associated variants.
1
Citation432
0
Save
0

Identification of context-dependent expression quantitative trait loci in whole blood

Daria Zhernakova et al.Dec 5, 2016
+44
M
P
D
Genetic risk factors often localize to noncoding regions of the genome with unknown effects on disease etiology. Expression quantitative trait loci (eQTLs) help to explain the regulatory mechanisms underlying these genetic associations. Knowledge of the context that determines the nature and strength of eQTLs may help identify cell types relevant to pathophysiology and the regulatory networks underlying disease. Here we generated peripheral blood RNA-seq data from 2,116 unrelated individuals and systematically identified context-dependent eQTLs using a hypothesis-free strategy that does not require previous knowledge of the identity of the modifiers. Of the 23,060 significant cis-regulated genes (false discovery rate (FDR) ≤ 0.05), 2,743 (12%) showed context-dependent eQTL effects. The majority of these effects were influenced by cell type composition. A set of 145 cis-eQTLs depended on type I interferon signaling. Others were modulated by specific transcription factors binding to the eQTL SNPs.
0
Citation411
0
Save
0

Phenotype prediction using biologically interpretable neural networks on multi-cohort multi-omics data

Arno Hilten et al.Aug 2, 2024
+44
B
J
A
Abstract Integrating multi-omics data into predictive models has the potential to enhance accuracy, which is essential for precision medicine. In this study, we developed interpretable predictive models for multi-omics data by employing neural networks informed by prior biological knowledge, referred to as visible networks. These neural networks offer insights into the decision-making process and can unveil novel perspectives on the underlying biological mechanisms associated with traits and complex diseases. We tested the performance, interpretability and generalizability for inferring smoking status, subject age and LDL levels using genome-wide RNA expression and CpG methylation data from the blood of the BIOS consortium (four population cohorts, N total = 2940). In a cohort-wise cross-validation setting, the consistency of the diagnostic performance and interpretation was assessed. Performance was consistently high for predicting smoking status with an overall mean AUC of 0.95 (95% CI: 0.90–1.00) and interpretation revealed the involvement of well-replicated genes such as AHRR , GPR15 and LRRN3 . LDL-level predictions were only generalized in a single cohort with an R 2 of 0.07 (95% CI: 0.05–0.08). Age was inferred with a mean error of 5.16 (95% CI: 3.97–6.35) years with the genes COL11A2, AFAP1 , OTUD7A , PTPRN2 , ADARB2 and CD34 consistently predictive. For both regression tasks, we found that using multi-omics networks improved performance, stability and generalizability compared to interpretable single omic networks. We believe that visible neural networks have great potential for multi-omics analysis; they combine multi-omic data elegantly, are interpretable, and generalize well to data from different cohorts.
0

Disease variants alter transcription factor levels and methylation of their binding sites

Marc Bonder et al.Nov 30, 2015
+57
D
R
M
Most disease associated genetic risk factors are non-coding, making it challenging to design experiments to understand their functional consequences. Identification of expression quantitative trait loci (eQTLs) has been a powerful approach to infer downstream effects of disease variants but the large majority remains unexplained.. The analysis of DNA methylation, a key component of the epigenome, offers highly complementary data on the regulatory potential of genomic regions. However, a large-scale, combined analysis of methylome and transcriptome data to infer downstream effects of disease variants is lacking. Here, we show that disease variants have wide-spread effects on DNA methylation in trans that likely reflect the downstream effects on binding sites of cis-regulated transcription factors. Using data on 3,841 Dutch samples, we detected 272,037 independent cis-meQTLs (FDR < 0.05) and identified 1,907 trait-associated SNPs that affect methylation levels of 10,141 different CpG sites in trans (FDR < 0.05), an eight-fold increase in the number of downstream effects that was known from trans-eQTL studies. Trans-meQTL CpG sites are enriched for active regulatory regions, being correlated with gene expression and overlap with Hi-C determined interchromosomal contacts. We detected many trans-meQTL SNPs that affect expression levels of nearby transcription factors (including NFKB1, CTCF and NKX2-3), while the corresponding trans-meQTL CpG sites frequently coincide with its respective binding site. Trans-meQTL mapping therefore provides a strategy for identifying and better understanding downstream functional effects of many disease-associated variants.
0

Hypothesis-free identification of modulators of genetic risk factors

Daria Zhernakova et al.Nov 30, 2015
+46
J
M
D
Genetic risk factors often localize in non-coding regions of the genome with unknown effects on disease etiology. Expression quantitative trait loci (eQTLs) help to explain the regulatory mechanisms underlying the association of genetic risk factors with disease. More mechanistic insights can be derived from knowledge of the context, such as cell type or the activity of signaling pathways, influencing the nature and strength of eQTLs. Here, we generated peripheral blood RNA-seq data from 2,116 unrelated Dutch individuals and systematically identified these context-dependent eQTLs using a hypothesis-free strategy that does not require prior knowledge on the identity of the modifiers. Out of the 23,060 significant cis-regulated genes (false discovery rate ≤ 0.05), 2,743 genes (12%) show context-dependent eQTL effects. The majority of those were influenced by cell type composition, revealing eQTLs that are particularly strong in cell types such as CD4+ T-cells, erythrocytes, and even lowly abundant eosinophils. A set of 145 cis-eQTLs were influenced by the activity of the type I interferon signaling pathway and we identified several cis-eQTLs that are modulated by specific transcription factors that bind to the eQTL SNPs. This demonstrates that large-scale eQTL studies in unchallenged individuals can complement perturbation experiments to gain better insight in regulatory networks and their stimuli.