Droplet-based single-cell RNA-sequencing (dscRNA-seq) has enabled rapid, massively parallel profiling of transcriptomes from tens of thousands of cells. Multiplexing samples for single cell capture and library preparation in dscRNA-seq would enable cost-effective designs of differential expression and genetic studies while avoiding technical batch effects, but its implementation remains challenging. Here, we introduce an in-silico algorithm demuxlet that harnesses natural genetic variation to discover the sample identity of each cell and identify droplets containing two cells. These capabilities enable multiplexed dscRNA-seq experiments where cells from unrelated individuals are pooled and captured at higher throughput than standard workflows. To demonstrate the performance of demuxlet, we sequenced 3 pools of peripheral blood mononuclear cells (PBMCs) from 8 lupus patients. Given genotyping data for each individual, demuxlet correctly recovered the sample identity of > 99% of singlets, and identified doublets at rates consistent with previous estimates. In PBMCs, we demonstrate the utility of multiplexed dscRNA-seq in two applications: characterizing cell type specificity and inter-individual variability of cytokine response from 8 lupus patients and mapping genetic variants associated with cell type specific gene expression from 23 donors. Demuxlet is fast, accurate, scalable and could be extended to other single cell datasets that incorporate natural or synthetic DNA barcodes.