SH
Shizheng Huang
Author with expertise in Molecular Mechanisms of Kidney Development and Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
1,512
h-index:
19
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Jagged1/Notch2 Controls Kidney Fibrosis via Tfam-mediated Metabolic Reprogramming

Shizheng Huang et al.Mar 29, 2018
While Notch signaling has been proposed to play a key role in fibrosis, the direct molecular pathways targeted by Notch signaling and the precise ligand and receptor pair that are responsible for kidney disease remain poorly defined. In this study, we found that JAG1 and NOTCH2 showed the strongest correlation with the degree of interstitial fibrosis in a genome wide expression analysis of a large cohort of human kidney samples. RNA sequencing analysis of kidneys of mice with folic acid nephropathy, unilateral ureteral obstruction, or APOL1-associated kidney disease indicated that Jag1 and Notch2 levels were higher in all analyzed kidney fibrosis models. Mice with tubule-specific deletion of Jag1 or Notch2 (Kspcre/Jag1flox/flox, and Kspcre/Notch2flox/flox) had no kidney-specific alterations at baseline, but showed protection from folic acid induced kidney fibrosis. Tubule-specific genetic deletion of Notch1 and global knock-out of Notch3 had no effect on fibrosis. In vitro chromatin immunoprecipitation experiments and genome-wide expression studies identified the mitochondrial transcription factor A (Tfam) as a direct Notch target. Re-expression of Tfam in tubule cells prevented Notch-induced metabolic and profibrotic reprogramming. Kidney tubule specific deletion of Tfam resulted in perinatal lethality. In summary, Jag1/Notch2 plays a key role in kidney fibrosis development by regulating Tfam expression and metabolic reprogramming.
0

Comprehensive single cell RNAseq analysis of the kidney reveals novel cell types and unexpected cell plasticity

Jihwan Park et al.Oct 13, 2017
A key limitations to understand kidney function and disease development has been that specific cell types responsible for specific homeostatic kidney function or disease phenotypes have not been defined at the molecular level. To fill this gap, we characterized 57,979 cells from healthy mouse kidneys using unbiased single-cell RNA sequencing. We show that genetic mutations that present with similar phenotypes mostly affect genes that are expressed in a single unique differentiated cell type. On the other hand, we found unexpected cell plasticity of epithelial cells in the final segment of the kidney (collecting duct) that is responsible for final composition of the urine. Using computational cell trajectory analysis and in vivo linage tracing, we found that, intercalated cells (that secrete protons) and principal cells (that maintain salt, water and potassium balance) undergo a Notch mediated interconversion via a newly identified transitional cell type. In disease states this transition is shifted towards the principal cell fate. Loss of intercalated cells likely contributes to metabolic acidosis observed in kidney disease. In summary, single cell analysis advanced a mechanistic description of kidney diseases by identifying a defective homeostatic cell lineage.