MC
Meng Cheng
Author with expertise in Quantum Many-Body Systems and Entanglement Dynamics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
829
h-index:
35
/
i10-index:
80
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Symmetry fractionalization, defects, and gauging of topological phases

Maissam Barkeshli et al.Sep 20, 2019
We examine the interplay of symmetry and topological order in $2+1$ dimensional topological phases of matter. We present a definition of the \it topological symmetry \rm group, which characterizes the symmetry of the emergent topological quantum numbers of a topological phase, and we describe its relation with the microscopic symmetry of the underlying physical system. We derive a general framework to characterize and classify symmetry fractionalization in topological phases, including phases that are non-Abelian and symmetries that permute the quasiparticle types and/or are anti-unitary. We develop a theory of extrinsic defects (fluxes) associated with elements of the symmetry group, which provides a general classification of symmetry-enriched topological phases derived from a topological phase of matter $\mathcal{C}$ with symmetry group $G$. The algebraic theory of the defects, known as a $G$-crossed braided tensor category $\mathcal{C}_{G}^{\times}$, allows one to compute many properties, such as the number of topologically distinct types of defects associated with each group element, their fusion rules, quantum dimensions, zero modes, braiding exchange transformations, a generalized Verlinde formula for the defects, and modular transformations of the $G$-crossed extensions of topological phases. We also examine the promotion of the global symmetry to a local gauge invariance, wherein the extrinsic $G$-defects are turned into deconfined quasiparticle excitations, which results in a different topological phase $(\mathcal{C}_{G}^{\times})^{G}$. A number of instructive and/or physically relevant examples are studied in detail.
0

Extracting subleading corrections in entanglement entropy at quantum phase transitions

Menghan Song et al.Jul 11, 2024
We systematically investigate the finite size scaling behavior of the Rényi entanglement entropy (EE) of several representative 2d quantum many-body systems between a subregion and its complement, with smooth boundaries as well as boundaries with corners. In order to reveal the subleading correction, we investigate the quantity “subtracted EE” S^s(l) = S(2l) - 2S(l) Ss(l)=S(2l)−2S(l) for each model, which is designed to cancel out the leading perimeter law. We find that (1) for a spin-1/2 model on a 2d square lattice whose ground state is the Neel order, the coefficient of the logarithmic correction to the perimeter law is consistent with the prediction based on the Goldstone modes; (2) for the (2+1)d (2+1)d O(3) Wilson-Fisher quantum critical point (QCP), realized with the bilayer antiferromagnetic Heisenberg model, a logarithmic subleading correction exists when there is sharp corner of the subregion, but for subregion with a smooth boundary our data suggests the absence of the logarithmic correction to the best of our efforts; (3) for the (2+1)d (2+1)d SU(2) J-Q _2 2 and J-Q _3 3 model for the deconfined quantum critical point (DQCP), we find a logarithmic correction for the EE even with smooth boundary.
0

Universal and naked-eye gene detection platform based on CRISPR/Cas12a/13a system

Chaoqun Yuan et al.May 7, 2019
Colorimetric gene detection based on gold nanoparticles (AuNPs) is an attractive detection format due to its simplicity. Here, we report a new design for a colorimetric gene-sensing platform based on the CRISPR/Cas system that has improved specificity, sensitivity, and universality. CRISPR/Cas12a and CRISPR/Cas13a have two distinct catalytic activities and are used for specific target gene recognition. Programmable recognition of DNA by Cas12a/crRNA and RNA by Cas13a/crRNA with a complementary sequence activates the nonspecific trans-ssDNA or -RNA cleavage, respectively, thus degrading the ssDNA or RNA linkers which are designed as a hybridization template for the AuNP-DNA probe pair. Target-induced trans-ssDNA or RNA cleavage leads to a distance-dependent color change for the AuNP-DNA probe pair. In this platform, naked eye detection of transgenic rice, African swine fever virus (ASFV), and a miRNA can be completed within 1 hour. Our colorimetric gene-sensing method shows superior characteristics, such as probe universality, isothermal reaction conditions, on-site detection capability, and sensitivity that is comparable to that of the fluorescent detection; thus, this method represents a robust next generation gene detection platform.