LB
Luca Berdondini
Author with expertise in Neural Interface Technology
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
0
h-index:
34
/
i10-index:
59
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Unsupervised spike sorting for large scale, high density multielectrode arrays

Gerrit Hilgen et al.Apr 13, 2016
+12
S
M
G
A new method for automated spike sorting for recordings with high density, large scale multielectrode arrays is presented. It is based on an efficient, low-dimensional representation of detected events by their estimated spatial current source locations and dominant spike shape features. Millions of events can be sorted in just minutes, and the full analysis chain scales roughly linearly with recording time. We demonstrate this method using recordings from the mouse retina with a 4,096 channel array, and present validation based on anatomical imaging and model-based quality control. Our analysis shows that it is feasible to reliably isolate the activity of hundreds to thousands of retinal ganglion cells in single recordings.
0

Multi-shanks SiNAPS Active Pixel Sensor CMOS probe: 1024 simultaneously recording channels for high-density intracortical brain mapping

Fabio Boi et al.Aug 29, 2019
+5
A
N
F
The advent of implantable active dense CMOS neural probes opened a new era for electrophysiology in neuroscience. These single shank electrode arrays, and the emerging tailored analysis tools, provide for the first time to neuroscientists the neurotechnology means to spatiotemporally resolve the activity of hundreds of different single-neurons in multiple vertically aligned brain structures. However, while these unprecedented experimental capabilities to study columnar brain properties are a big leap forward in neuroscience, there is the need to spatially distribute electrodes also horizontally. Closely spacing and consistently placing in well-defined geometrical arrangement multiple isolated single-shank probes is methodologically and economically impractical. Here, we present the first high-density CMOS neural probe with multiple shanks integrating thousand’s of closely spaced and simultaneously recording microelectrodes to map neural activity across 2D lattice. Taking advantage from the high-modularity of our electrode-pixels-based SiNAPS technology, we realized a four shanks active dense probe with 256 electrode-pixels/shank and a pitch of 28 µ m, for a total of 1024 simultaneously recording channels. The achieved performances allow for full-band, whole-array read-outs at 25 kHz/channel, show a measured input referred noise in the action potential band (300-7000 Hz) of 6.5 ± 2.1 µ V RMS , and a power consumption <6 µ W/electrode-pixel. Preliminary recordings in awake behaving mice demonstrated the capability of multi-shanks SiNAPS probes to simultaneously record neural activity (both LFPs and spikes) from a brain area >6 mm2, spanning cortical, hippocampal and thalamic regions. High-density 2D array enables combining large population unit recording across distributed networks with precise intra- and interlaminar/nuclear mapping of the oscillatory dynamics. These results pave the way to a new generation of high-density and extremely compact multi-shanks CMOS-probes with tunable layouts for electrophysiological mapping of brain activity at the single-neurons resolution.