NG
Nava Gharaei
Author with expertise in Stochasticity in Gene Regulatory Networks
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
0
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Efficient Retroelement-Mediated DNA Writing in Bacteria

Fahim Farzadfard et al.Feb 22, 2020
T
R
N
F
The ability to efficiently and dynamically change information stored in genomes would enable powerful strategies for studying cell biology and controlling cellular phenotypes. Current recombineering-mediated DNA writing platforms in bacteria are limited to specific laboratory conditions, often suffer from suboptimal editing efficiencies, and are not suitable for in situ applications. To overcome these limitations, we engineered a retroelement-mediated DNA writing system that enables efficient and precise editing of bacterial genomes without the requirement for target-specific elements or selection. We demonstrate that this DNA writing platform enables a broad range of applications, including efficient, scarless, and cis-element-independent editing of targeted microbial genomes within complex communities, the high-throughput mapping of spatial information and cellular interactions into DNA memory, and the continuous evolution of cellular traits.
0

Single-Nucleotide-Resolution Computing and Memory in Living Cells

Fahim Farzadfard et al.Feb 15, 2018
+4
G
N
F
Computing and memory in living cells are central to encoding next-generation therapies and studying in situ biology, but existing strategies have limited encoding capacity and are challenging to scale. To overcome this bottleneck, we developed a highly scalable, robust and compact platform for encoding logic and memory operations in living bacterial and human cells. This platform, named DOMINO for DNA-based Ordered Memory and Iteration Network Operator, converts DNA in living cells into an addressable, readable, and writable computation and storage medium via a single-nucleotide resolution read-write head that enables dynamic and highly efficient DNA manipulation. We demonstrate that the order and combination of DNA writing events can be programmed by biological cues and multiple molecular recorders can be coordinated to encode a wide range of order-independent, sequential, and temporal logic and memory operations. Furthermore, we show that these operators can be used to perform both digital and analog computation, and record signaling dynamics and cellular states in a long-term, autonomous, and minimally disruptive fashion. Finally, we show that the platform can be functionalized with gene regulatory modules and interfaced with cellular circuits to continuously monitor cellular phenotypes and engineer gene circuits with artificial learning capacities. We envision that highly scalable, compact, and modular DOMINO operators will lay the foundation for building robust and sophisticated synthetic gene circuits for numerous biotechnological and biomedical applications.