SH
Sarah Haynes
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
41
h-index:
16
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Identification of Pirin as a Molecular Target of the CCG-1423/CCG-203971 Series of Antifibrotic and Antimetastatic Compounds

Erika Lisabeth et al.Mar 18, 2019
+10
I
D
E
A series of compounds (including CCG-1423 and CCG-203971) discovered through an MRTF/SRF-dependent luciferase screen has shown remarkable efficacy in a variety of in vitro and in vivo models, including significant reduction of melanoma metastasis and bleomycin- induced fibrosis. Although these compounds are efficacious in these disease models, the molecular target is unknown. Here, we describe affinity isolation-based target identification efforts which yielded pirin, an iron-dependent cotranscription factor, as a target of this series of compounds. Using biophysical techniques including isothermal titration calorimetry and X-ray crystallography, we verify that pirin binds these compounds in vitro. We also show with genetic approaches that pirin modulates MRTF- dependent luciferase reporter activity. Finally, using both siRNA and a previously validated pirin inhibitor, we show a role for pirin in TGF-β- induced gene expression in primary dermal fibroblasts. A recently developed analog, CCG-257081, which co crystallizes with pirin, is also effective in the prevention of bleomycin-induced dermal fibrosis.
1
Citation31
0
Save
0

Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant

Fengchao Yu et al.Mar 20, 2020
+3
G
S
F
Abstract Ion mobility brings an additional dimension of separation to liquid chromatography-mass spectrometry, improving identification of peptides and proteins in complex mixtures. A recently introduced timsTOF mass spectrometer (Bruker) couples trapped ion mobility separation to time-of-flight mass analysis. With the parallel accumulation serial fragmentation (PASEF) method, the timsTOF platform achieves promising results, yet analysis of the data generated on this platform represents a major bottleneck. Currently, MaxQuant and PEAKS are most commonly used to analyze these data. However, due to the high complexity of timsTOF PASEF data, both require substantial time to perform even standard tryptic searches. Advanced searches (e.g. with many variable modifications, semi- or non-enzymatic searches, or open searches for post-translational modification discovery) are practically impossible. We have extended our fast peptide identification tool MSFragger to support timsTOF PASEF data, and developed a label-free quantification tool, IonQuant, for fast and accurate 4-D feature extraction and quantification. Using a HeLa data set published by Meier et al. (2018), we demonstrate that MSFragger identifies significantly (∼30%) more unique peptides than MaxQuant (1.6.10.43), and performs comparably or better than PEAKS X+ (∼10% more peptides). IonQuant outperforms both in terms of number of quantified proteins while maintaining good quantification precision and accuracy. Runtime tests show that MSFragger and IonQuant can fully process a typical two-hour PASEF run in under 70 minutes on a typical desktop (6 CPU cores, 32 GB RAM), significantly faster than other tools. Finally, through semi-enzymatic searching, we significantly increase the number of identified peptides. Within these semi-tryptic identifications, we report evidence of gas-phase fragmentation prior to MS/MS analysis.
0

Identification of Pirin as a Molecular Target of the CCG-1423/CCG- 203971 Series of Anti-Fibrotic and Anti-Metastatic Compounds

Erika Lisabeth et al.Oct 31, 2018
+10
I
D
E
Abstract A series of compounds (including CCG-1423 and CCG-203971) discovered through an MRTF/SRF dependent luciferase screen has shown remarkable efficacy in a variety of in vitro and in vivo models, including melanoma metastasis and bleomycin-induced fibrosis. Although these compounds are efficacious, the molecular target is unknown. Here, we describe affinity isolation-based target identification efforts which yielded pirin, an iron-dependent co-transcription factor, as a target of this series of compounds. Using biophysical techniques including isothermal titration calorimetry and X-ray crystallography, we verify that pirin binds these compounds in vitro . We also show with genetic approaches that pirin modulates MRTF-dependent SRE.L Luciferase activation. Finally, using both siRNA and a previously validated pirin inhibitor, we show a role for pirin in TGF-p induced gene expression in primary dermal fibroblasts. A recently developed analog, CCG-257081, which co-crystallizes with pirin, is also effective in the prevention of bleomycin-induced dermal fibrosis.
0
Citation2
0
Save
1

Identification of Pirin as a Molecular Target of the CCG-1423/CCG-203971 Series of Antifibrotic and Antimetastatic Compounds

Erika Lisabeth et al.Mar 18, 2019
+10
I
D
E
A series of compounds (including CCG-1423 and CCG-203971) discovered through an MRTF/SRF-dependent luciferase screen has shown remarkable efficacy in a variety of in vitro and in vivo models, including significant reduction of melanoma metastasis and bleomycin- induced fibrosis. Although these compounds are efficacious in these disease models, the molecular target is unknown. Here, we describe affinity isolation-based target identification efforts which yielded pirin, an iron-dependent cotranscription factor, as a target of this series of compounds. Using biophysical techniques including isothermal titration calorimetry and X-ray crystallography, we verify that pirin binds these compounds in vitro. We also show with genetic approaches that pirin modulates MRTF- dependent luciferase reporter activity. Finally, using both siRNA and a previously validated pirin inhibitor, we show a role for pirin in TGF-β- induced gene expression in primary dermal fibroblasts. A recently developed analog, CCG-257081, which co crystallizes with pirin, is also effective in the prevention of bleomycin-induced dermal fibrosis.
1

Teaching Python for Data Science: Collaborative development of a modular & interactive curriculum

Marlena Duda et al.Jun 18, 2021
+15
N
K
M
Summary We are bioinformatics trainees at the University of Michigan who started a local chapter of Girls Who Code to provide a fun and supportive environment for high school women to learn the power of coding. Our goal was to cover basic coding topics and data science concepts through live coding and hands-on practice. However, we could not find a resource that exactly met our needs. Therefore, over the past three years, we have developed a curriculum and instructional format using Jupyter notebooks to effectively teach introductory Python for data science. This method, inspired by The Carpentries organization, uses bite-sized lessons followed by independent practice time to reinforce coding concepts, and culminates in a data science capstone project using real-world data. We believe our open curriculum is a valuable resource to the wider education community and hope that educators will use and improve our lessons, practice problems, and teaching best practices. Anyone can contribute to our educational materials on GitHub.
1

Kinesin-binding protein remodels the kinesin motor to prevent microtubule-binding

April Solon et al.Jun 2, 2021
+7
K
Z
A
ABSTRACT Kinesins are tightly regulated in space and time to control their activation in the absence of cargo-binding. Kinesin-binding protein (KIFBP) was recently discovered to bind the catalytic motor heads of 8 of the 45 known kinesin superfamily members and inhibit binding to microtubules. In humans, mutation of KIFBP gives rise to Goldberg-Shprintzen syndrome (GOSHS), but the kinesin(s) that is misregulated to produce clinical features of the disease is not known. Understanding the structural mechanism by which KIFBP selects its kinesin binding partners will be key to unlocking this knowledge. Using a combination of cryo-electron microscopy and crosslinking mass spectrometry, we determined structures of KIFBP alone and in complex with two mitotic kinesins, revealing regions of KIFBP that participate in complex formation. KIFBP adopts an alpha-helical solenoid structure composed of TPR repeats. We find that KIFBP uses a 2-pronged mechanism to remodel kinesin motors and block microtubule-binding. First, KIFBP engages the microtubule-binding interface and sterically blocks interaction with microtubules. Second, KIFBP induces allosteric conformational changes to the kinesin motor head that displace a key structural element in the kinesin motor head (α-helix 4) required for microtubule binding. We identified two regions of KIFBP necessary for in vitro kinesin-binding as well as cellular regulation during mitosis. Taken together, this work establishes the mechanism of kinesin inhibition by KIFBP and provides the first example of motor domain remodeling as a means to abrogate kinesin activity.
0

Autoinhibited kinesin-1 adopts a hierarchical folding pattern

Zhenyu Tan et al.Jan 1, 2023
+5
F
Y
Z
Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine cross-linking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer [kinesin-1 heavy chain (KHC)] and kinesin-1 heterotetramer [KHC bound to kinesin light chain 1 (KLC1)]. Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.
48

IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs

Fengchao Yu et al.Nov 4, 2020
A
S
F
Abstract Missing values weaken the power of label-free quantitative proteomic experiments to uncover true quantitative differences between biological samples or experimental conditions. Match-between-runs (MBR) has become a common approach to mitigate the missing value problem, where peptides identified by tandem mass spectra in one run are transferred to another by inference based on m/z, charge state, retention time, and ion mobility when applicable. Though tolerances are used to ensure such transferred identifications are reasonably located and meet certain quality thresholds, little work has been done to evaluate the statistical confidence of MBR. Here, we present a mixture model-based approach to estimate the false discovery rate (FDR) of peptide and protein identification transfer, which we implement in the label-free quantification tool IonQuant. Using several benchmarking datasets generated on both Orbitrap and timsTOF mass spectrometers, we demonstrate superior performance of IonQuant with FDR-controlled MBR compared to MaxQuant (19-38 times faster; 6-18% more proteins quantified and with comparable or better accuracy). We further illustrate the performance of IonQuant, and highlight the need for FDR-controlled MBR, in two single-cell proteomics experiments, including one acquired with the help of high-field asymmetric ion mobility spectrometry (FAIMS) separation. Fully integrated in FragPipe computational environment, IonQuant with FDR-controlled MBR enables fast and accurate peptide and protein quantification in label-free proteomics experiments.