WS
Welelta Shiferaw
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
10
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
66

Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations

Alicia Martin et al.Apr 28, 2020
Abstract Background Genetic studies of biomedical phenotypes in underrepresented populations identify disproportionate numbers of novel associations. However, current genomics infrastructure--including most genotyping arrays and sequenced reference panels--best serves populations of European descent. A critical step for facilitating genetic studies in underrepresented populations is to ensure that genetic technologies accurately capture variation in all populations. Here, we quantify the accuracy of low-coverage sequencing in diverse African populations. Results We sequenced the whole genomes of 91 individuals to high-coverage (≥20X) from the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study, in which participants were recruited from Ethiopia, Kenya, South Africa, and Uganda. We empirically tested two data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole genome sequencing data. We show that low-coverage sequencing at a depth of ≥4X captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5-1X) performed comparable to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation, with 4X sequencing detecting 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Conclusion These results indicate that low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, including those that capture variation most common in Europeans and Africans. Low-coverage sequencing effectively identifies novel variation (particularly in underrepresented populations), and presents opportunities to enhance variant discovery at a similar cost to traditional approaches.
66
Citation8
0
Save
21

Genetic structure correlates with ethnolinguistic diversity in eastern and southern Africa

Elizabeth Atkinson et al.May 19, 2021
Summary African populations are the most diverse in the world yet are sorely underrepresented in medical genetics research. Here, we examine the structure of African populations using genetic and comprehensive multigenerational ethnolinguistic data from the Neuropsychiatric Genetics of African Populations-Psychosis study (NeuroGAP-Psychosis) consisting of 900 individuals from Ethiopia, Kenya, South Africa, and Uganda. We find that self-reported language classifications meaningfully tag underlying genetic variation that would be missed with consideration of geography alone, highlighting the importance of culture in shaping genetic diversity. Leveraging our uniquely rich multi-generational ethnolinguistic metadata, we track language transmission through the pedigree, observing the disappearance of several languages in our cohort as well as notable shifts in frequency over three generations. We find suggestive evidence for the rate of language transmission in matrilineal groups having been higher than that for patrilineal ones. We highlight both the diversity of variation within the African continent, as well as how within-Africa variation can be informative for broader variant interpretation; many variants appearing rare elsewhere are common in parts of Africa. The work presented here improves the understanding of the spectrum of genetic variation in African populations and highlights the enormous and complex genetic and ethnolinguistic diversity within Africa.
21
Citation2
0
Save