MB
Melanie Boerries
Author with expertise in Cancer Stem Cells and Tumor Metastasis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
35
(66% Open Access)
Cited by:
1,886
h-index:
52
/
i10-index:
135
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer

Angela Krebs et al.Apr 17, 2017
Metastasis is the major cause of cancer-associated death. Partial activation of the epithelial-to-mesenchymal transition program (partial EMT) was considered a major driver of tumour progression from initiation to metastasis. However, the role of EMT in promoting metastasis has recently been challenged, in particular concerning effects of the Snail and Twist EMT transcription factors (EMT-TFs) in pancreatic cancer. In contrast, we show here that in the same pancreatic cancer model, driven by Pdx1-cre-mediated activation of mutant Kras and p53 (KPC model), the EMT-TF Zeb1 is a key factor for the formation of precursor lesions, invasion and notably metastasis. Depletion of Zeb1 suppresses stemness, colonization capacity and in particular phenotypic/metabolic plasticity of tumour cells, probably causing the observed in vivo effects. Accordingly, we conclude that different EMT-TFs have complementary subfunctions in driving pancreatic tumour metastasis. Therapeutic strategies should consider these potential specificities of EMT-TFs to target these factors simultaneously. Adding to the recent debate on the role of epithelial–mesenchymal transition (EMT) in cancer cell invasion and metastasis, Brabletz and colleagues show that the EMT-inducing transcription factor Zeb1 drives pancreatic tumorigenesis and metastasis.
0
Citation819
0
Save
0

Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma

Vidhya Ravi et al.Jun 1, 2022
Glioblastomas are malignant tumors of the central nervous system hallmarked by subclonal diversity and dynamic adaptation amid developmental hierarchies. The source of dynamic reorganization within the spatial context of these tumors remains elusive. Here, we characterized glioblastomas by spatially resolved transcriptomics, metabolomics, and proteomics. By deciphering regionally shared transcriptional programs across patients, we infer that glioblastoma is organized by spatial segregation of lineage states and adapts to inflammatory and/or metabolic stimuli, reminiscent of the reactive transformation in mature astrocytes. Integration of metabolic imaging and imaging mass cytometry uncovered locoregional tumor-host interdependence, resulting in spatially exclusive adaptive transcriptional programs. Inferring copy-number alterations emphasizes a spatially cohesive organization of subclones associated with reactive transcriptional programs, confirming that environmental stress gives rise to selection pressure. A model of glioblastoma stem cells implanted into human and rodent neocortical tissue mimicking various environments confirmed that transcriptional states originate from dynamic adaptation to various environments.
0
Citation278
0
Save
0

Spatially confined sub-tumor microenvironments in pancreatic cancer

Barbara Grünwald et al.Oct 1, 2021
Intratumoral heterogeneity is a critical frontier in understanding how the tumor microenvironment (TME) propels malignant progression. Here, we deconvolute the human pancreatic TME through large-scale integration of histology-guided regional multiOMICs with clinical data and patient-derived preclinical models. We discover "subTMEs," histologically definable tissue states anchored in fibroblast plasticity, with regional relationships to tumor immunity, subtypes, differentiation, and treatment response. "Reactive" subTMEs rich in complex but functionally coordinated fibroblast communities were immune hot and inhabited by aggressive tumor cell phenotypes. The matrix-rich "deserted" subTMEs harbored fewer activated fibroblasts and tumor-suppressive features yet were markedly chemoprotective and enriched upon chemotherapy. SubTMEs originated in fibroblast differentiation trajectories, and transitory states were notable both in single-cell transcriptomics and in situ. The intratumoral co-occurrence of subTMEs produced patient-specific phenotypic and computationally predictable heterogeneity tightly linked to malignant biology. Therefore, heterogeneity within the plentiful, notorious pancreatic TME is not random but marks fundamental tissue organizational units.
0
Citation260
0
Save
1

Comprehensive Genomic and Transcriptomic Analysis for Guiding Therapeutic Decisions in Patients with Rare Cancers

Peter Horak et al.Jun 10, 2021
Abstract The clinical relevance of comprehensive molecular analysis in rare cancers is not established. We analyzed the molecular profiles and clinical outcomes of 1,310 patients (rare cancers, 75.5%) enrolled in a prospective observational study by the German Cancer Consortium that applies whole-genome/exome and RNA sequencing to inform the care of adults with incurable cancers. On the basis of 472 single and six composite biomarkers, a cross-institutional molecular tumor board provided evidence-based management recommendations, including diagnostic reevaluation, genetic counseling, and experimental treatment, in 88% of cases. Recommended therapies were administered in 362 of 1,138 patients (31.8%) and resulted in significantly improved overall response and disease control rates (23.9% and 55.3%) compared with previous therapies, translating into a progression-free survival ratio &gt;1.3 in 35.7% of patients. These data demonstrate the benefit of molecular stratification in rare cancers and represent a resource that may promote clinical trial access and drug approvals in this underserved patient population. Significance: Rare cancers are difficult to treat; in particular, molecular pathogenesis–oriented medical therapies are often lacking. This study shows that whole-genome/exome and RNA sequencing enables molecularly informed treatments that lead to clinical benefit in a substantial proportion of patients with advanced rare cancers and paves the way for future clinical trials. See related commentary by Eggermont et al., p. 2677. This article is highlighted in the In This Issue feature, p. 2659
1
Citation187
0
Save
4

T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10

Vidhya Ravi et al.Feb 17, 2022
Despite recent advances in cancer immunotherapy, certain tumor types, such as Glioblastomas, are highly resistant due to their tumor microenvironment disabling the anti-tumor immune response. Here we show, by applying an in-silico multidimensional model integrating spatially resolved and single-cell gene expression data of 45,615 immune cells from 12 tumor samples, that a subset of Interleukin-10-releasing HMOX1+ myeloid cells, spatially localizing to mesenchymal-like tumor regions, drive T-cell exhaustion and thus contribute to the immunosuppressive tumor microenvironment. These findings are validated using a human ex-vivo neocortical glioblastoma model inoculated with patient derived peripheral T-cells to simulate the immune compartment. This model recapitulates the dysfunctional transformation of tumor infiltrating T-cells. Inhibition of the JAK/STAT pathway rescues T-cell functionality both in our model and in-vivo, providing further evidence of IL-10 release being an important driving force of tumor immune escape. Our results thus show that integrative modelling of single cell and spatial transcriptomics data is a valuable tool to interrogate the tumor immune microenvironment and might contribute to the development of successful immunotherapies.
4
Citation128
1
Save
34

Lineage and Spatial Mapping of Glioblastoma-associated Immunity

Vidhya Ravi et al.Jun 2, 2020
Summary The diversity of molecular states and cellular plasticity of immune cells in the glioblastoma environment is still poorly understood. Here, we performed scRNA sequencing of the immune compartment and mapped potential cellular interactions leading to an immunosuppressive microenvironment and dysfunction of T cells. Through inferring the dynamic adaptation during T cell activation, we identified three different terminal states with unique transcriptional programs. Modeling of driver genes for terminal T cell fate identified IL-10 signaling alterations in a subpopulation of HAVCR2(+) T cells. To explore in depth cellular interactions, we established an in-silico model by the integration of spatial transcriptomic and scRNA-sequencing, and identified a subset of HMOX1 + myeloid cells defined by IL10 release leading to T cell exhaustion. We found a spatial overlap between HMOX(+) myeloid and HAVCR2(+) T cells, suggesting that myeloid-lymphoid interaction causes immunosuppression present in tumor regions with enriched mesenchymal gene expression. Using human neocortical GBM model, coupled with patient-derived T cells, we confirmed that the functional interaction between myeloid and lymphoid cells, leads to a dysfunctional state of T cells. This IL-10 driven T cell exhaustion was found to be rescued by JAK/STAT inhibition. A comprehensive understanding of the cellular states and plasticity of lymphoid cells in GBM will aid towards successful immunotherapeutic approaches.
34
Citation10
0
Save
1

Proteogenomic analysis reveals RNA as an important source for tumor-agnostic neoantigen identification correlating with T-cell infiltration

Celina Tretter et al.Sep 18, 2022
Abstract Systemic pan-tumor analyses may reveal the significance of common features implicated in cancer immunogenicity and patient survival. Here, we provide a comprehensive multi-omics data set for 32 patients across 25 tumor types by combining proteogenomics with phenotypic and functional analyses. By using an optimized computational approach, we discovered a large number of novel tumor-specific and tumor-associated antigens including shared common target candidates. To create a pipeline for the identification of neoantigens in our cohort, we combined deep DNA and RNA sequencing with MS- based immunopeptidomics of tumor specimens, followed by the assessment of their immunogenicity. In fact, we could detect a broad variety of non-wild type HLA-binding peptides in the majority of patients and confirmed the immunogenicity of 24 neoantigens. Most interestingly, the majority of total and immunogenic neoantigens originated from variants identified in the RNA dataset, illustrating the importance of RNA as a still understudied source of cancer antigens. Moreover, the amount of these mainly RNA-based immunogenic neoantigens correlated positively with overall CD8 + tumor-infiltrating T cells. This study therefore underlines the importance of RNA-centered variant detection for the identification of shared biomarkers and potentially relevant neoantigen candidates. Statement of significance The significance of this study lies not only in the potential of our optimized proteogenomic workflow for the discovery of neoantigens (in particular RNA-derived neoantigens) for clinical application, but sheds light on the entity-agnostic prevalence of HLA class I peptide presentation of RNA processing events to be used for tumor targeting.
1
Citation3
0
Save
1

Spatially confined sub-tumor microenvironments orchestrate pancreatic cancer pathobiology

Barbara Grünwald et al.Feb 19, 2021
Summary Pancreatic ductal adenocarcinoma (PDAC) remains resistant to most treatments and demonstrates a complex pathobiology. Here, we deconvolute regional heterogeneity in the human PDAC tumor microenvironment (TME), a long-standing obstacle, to define precise stromal contributions to PDAC progression. Large scale integration of histology-guided multiOMICs with clinical data sets and functional in vitro models uncovers two microenvironmental programs in PDAC that were anchored in fibroblast differentiation states. These sub-tumor microenvironments (subTMEs) co-occurred intratumorally and were spatially confined, producing patient-specific cellular and molecular heterogeneity associated with shortened patient survival. Each subTME was uniquely structured to support discrete aspects of tumor biology: reactive regions rich in activated fibroblast communities were immune-hot and promoted aggressive tumor progression while deserted regions enriched in extracellular matrix supported tumor differentiation yet were markedly chemoprotective. In conclusion, PDAC regional heterogeneity derives from biologically distinct reactive and protective TME elements with a defined, active role in PDAC progression. Graphical Abstract & Key findings PDAC regional heterogeneity originates in sub-tumor microenvironments (subTMEs) SubTMEs exhibit distinct immune phenotypes and CAF differentiation states Different subTMEs are either tumor-promoting or chemoprotective Intratumoral subTME co-occurrence links stromal heterogeneity to patient outcome
1
Citation3
0
Save
Load More