BR
Blanca Rodríguez
Author with expertise in Molecular Mechanisms of Cardiac Arrhythmias
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
37
(65% Open Access)
Cited by:
3,454
h-index:
69
/
i10-index:
375
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology

Oliver Britton et al.May 20, 2013
Cellular and ionic causes of variability in the electrophysiological activity of hearts from individuals of the same species are unknown. However, improved understanding of this variability is key to enable prediction of the response of specific hearts to disease and therapies. Limitations of current mathematical modeling and experimental techniques hamper our ability to provide insight into variability. Here, we describe a methodology to unravel the ionic determinants of intersubject variability exhibited in experimental recordings, based on the construction and calibration of populations of models. We illustrate the methodology through its application to rabbit Purkinje preparations, because of their importance in arrhythmias and safety pharmacology assessment. We consider a set of equations describing the biophysical processes underlying rabbit Purkinje electrophysiology, and we construct a population of over 10,000 models by randomly assigning specific parameter values corresponding to ionic current conductances and kinetics. We calibrate the model population by closely comparing simulation output and experimental recordings at three pacing frequencies. We show that 213 of the 10,000 candidate models are fully consistent with the experimental dataset. Ionic properties in the 213 models cover a wide range of values, including differences up to ±100% in several conductances. Partial correlation analysis shows that particular combinations of ionic properties determine the precise shape, amplitude, and rate dependence of specific action potentials. Finally, we demonstrate that the population of models calibrated using data obtained under physiological conditions quantitatively predicts the action potential duration prolongation caused by exposure to four concentrations of the potassium channel blocker dofetilide.
0
Citation310
0
Save
0

Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity

Elisa Passini et al.Sep 12, 2017
Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC50/Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarisation/depolarisation abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarisation reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-pump) are highly vulnerable to drug-induced repolarisation abnormalities, while those with reduced inward current density (fast/late Na+ and Ca2+ currents) exhibit high susceptibility to depolarisation abnormalities. Repolarisation abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca2+-transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.
0

In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products

Marco Viceconti et al.Jan 25, 2020
Historically, the evidences of safety and efficacy that companies provide to regulatory agencies as support to the request for marketing authorization of a new medical product have been produced experimentally, either in vitro or in vivo. More recently, regulatory agencies started receiving and accepting evidences obtained in silico, i.e. through modelling and simulation. However, before any method (experimental or computational) can be acceptable for regulatory submission, the method itself must be considered "qualified" by the regulatory agency. This involves the assessment of the overall "credibility" that such a method has in providing specific evidence for a given regulatory procedure. In this paper, we describe a methodological framework for the credibility assessment of computational models built using mechanistic knowledge of physical and chemical phenomena, in addition to available biological and physiological knowledge; these are sometimes referred to as "biophysical" models. Using guiding examples, we explore the definition of the context of use, the risk analysis for the definition of the acceptability thresholds, and the various steps of a comprehensive verification, validation and uncertainty quantification process, to conclude with considerations on the credibility of a prediction for a specific context of use. While this paper does not provide a guideline for the formal qualification process, which only the regulatory agencies can provide, we expect it to help researchers to better appreciate the extent of scrutiny required, which should be considered early on in the development/use of any (new) in silico evidence.
0
Citation212
0
Save
Load More