IM
Ian Mackay
Author with expertise in Genetic Diversity and Breeding of Wheat
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(82% Open Access)
Cited by:
811
h-index:
43
/
i10-index:
82
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery

John Hickey et al.Sep 1, 2017
Wayne Powell and colleagues compare the different tools and approaches used by the plant breeding community versus the animal breeding community for crop and livestock improvement. They argue that the two disciplines can be united via adoption of genomic selection along with the exchange of resources and techniques between the two areas. The rate of annual yield increases for major staple crops must more than double relative to current levels in order to feed a predicted global population of 9 billion by 2050. Controlled hybridization and selective breeding have been used for centuries to adapt plant and animal species for human use. However, achieving higher, sustainable rates of improvement in yields in various species will require renewed genetic interventions and dramatic improvement of agricultural practices. Genomic prediction of breeding values has the potential to improve selection, reduce costs and provide a platform that unifies breeding approaches, biological discovery, and tools and methods. Here we compare and contrast some animal and plant breeding approaches to make a case for bringing the two together through the application of genomic selection. We propose a strategy for the use of genomic selection as a unifying approach to deliver innovative 'step changes' in the rate of genetic gain at scale.
0
Citation315
0
Save
0

Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome

James Cockram et al.Nov 29, 2010
Although commonplace in human disease genetics, genome-wide association (GWA) studies have only relatively recently been applied to plants. Using 32 phenotypes in the inbreeding crop barley, we report GWA mapping of 15 morphological traits across ∼500 cultivars genotyped with 1,536 SNPs. In contrast to the majority of human GWA studies, we observe high levels of linkage disequilibrium within and between chromosomes. Despite this, GWA analysis readily detected common alleles of high penetrance. To investigate the potential of combining GWA mapping with comparative analysis to resolve traits to candidate polymorphism level in unsequenced genomes, we fine-mapped a selected phenotype (anthocyanin pigmentation) within a 140-kb interval containing three genes. Of these, resequencing the putative anthocyanin pathway gene HvbHLH1 identified a deletion resulting in a premature stop codon upstream of the basic helix-loop-helix domain, which was diagnostic for lack of anthocyanin in our association and biparental mapping populations. The methodology described here is transferable to species with limited genomic resources, providing a paradigm for reducing the threshold of map-based cloning in unsequenced crops.
0
Citation267
0
Save
0

An Eight-Parent Multiparent Advanced Generation Inter-Cross Population for Winter-Sown Wheat: Creation, Properties, and Validation

Ian Mackay et al.Sep 1, 2014
Abstract MAGIC populations represent one of a new generation of crop genetic mapping resources combining high genetic recombination and diversity. We describe the creation and validation of an eight-parent MAGIC population consisting of 1091 F7 lines of winter-sown wheat (Triticum aestivum L.). Analyses based on genotypes from a 90,000-single nucleotide polymorphism (SNP) array find the population to be well-suited as a platform for fine-mapping quantitative trait loci (QTL) and gene isolation. Patterns of linkage disequilibrium (LD) show the population to be highly recombined; genetic marker diversity among the founders was 74% of that captured in a larger set of 64 wheat varieties, and 54% of SNPs segregating among the 64 lines also segregated among the eight founder lines. In contrast, a commonly used reference bi-parental population had only 54% of the diversity of the 64 varieties with 27% of SNPs segregating. We demonstrate the potential of this MAGIC resource by identifying a highly diagnostic marker for the morphological character "awn presence/absence" and independently validate it in an association-mapping panel. These analyses show this large, diverse, and highly recombined MAGIC population to be a powerful resource for the genetic dissection of target traits in wheat, and it is well-placed to efficiently exploit ongoing advances in phenomics and genomics. Genetic marker and trait data, together with instructions for access to seed, are available at http://www.niab.com/MAGIC/.
0
Citation207
0
Save
9

On the origin of photoperiod non-responsiveness in barley

Rajiv Sharma et al.Jul 3, 2020
Abstract In barley, the transition from the vegetative to reproductive phase is complex and under the control of photoperiodic and temperature conditions. One major gene involved is PPD-H1 , a PSEUDO-RESPONSE REGULATOR 7 ( PRR7 ) that encodes a component of the circadian clock. Mutation at PPD-H1 resulted in the photoperiod non-responsive ppd-H1 alleles that are beneficial under high latitudinal environments as they allow vegetative growth during the long-day summer conditions whereby higher yields are harvested by farmers. Utilizing a diverse GWAS panel of world-wide origin and a genome-wide gene-based set of 50K SNP markers, a strong association of days to heading with the PPD-H1 gene was detected in multi-location field trials. Re-sequencing of the gene spanning putative causative SNPs, SNP22 (Turner et al. 2005) and SNP48 (Jones et al. 2008), detected recombination between the two, previously reported to be in complete LD. Phenotyping of the recombinants and phylogenetic relationships among haplotypes supported the original conclusion of Turner et al. (2005) that SNP22, present in the CCT domain, is the most likely causative SNP. To infer the origin of non-responsiveness, the PPD-H1 gene was re-sequenced in a geo-referenced collection of 2057 wild and domesticated barleys and compared with the allelic status of the 6000-year-old barley sample from the Yoram cave in the Masada cliff. A monophyletic and post-domestication origin in the Fertile Crescent was found in contrast to the pre-domestication origin proposed by Jones et al. (2008). We show that the photoperiod non-responsiveness originated from Desert type wild barley in the Southern Levant.
9
Citation10
0
Save
78

Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding

Michael Scott et al.Sep 15, 2020
Abstract Background Breeding has helped improve bread wheat yield significantly over the last century. Understanding the potential for future crop improvement depends on relating segregating genetic variation to agronomic traits. Results We bred NIAB Diverse MAGIC population, comprising over 500 recombinant inbred lines, descended from sixteen bread wheat varieties released between 1935-2004. We sequenced the founders’ exomes and promotors by capture. Despite being highly representative of North-West European wheat and capturing 73% of global polymorphism, we found 89% of genes contained no more than three haplotypes. We sequenced each line with 0.3x coverage whole-genome sequencing, and imputed 1.1M high-quality SNPs that were over 99% concordant with array genotypes. Imputation accuracy remained high at coverage as low as 0.076x, with or without the use of founder genomes as reference panels. We created a genotype-phenotype map for 47 traits over two years. We found 136 genome-wide significant associations, concentrated at 42 genetic loci with large and often pleiotropic effects. Outside of these loci most traits are polygenic, as revealed by multi-locus shrinkage modelling. Conclusions Historically, wheat breeding has reshuffled a limited palette of haplotypes; continued improvement will require selection at dozens of loci of diminishing effect, as most of the major loci we mapped are known. Breeding to optimise one trait generates correlated trait changes, exemplified by the negative trade-off between yield and protein content, unless selection and recombination can break critical unfavourable trait-trait associations. Finally, low coverage whole genome sequencing of bread wheat populations is an economical and accurate genotyping strategy.
78
Citation6
0
Save
4

Trends of genetic changes uncovered by Env- and Eigen-GWAS in wheat and barley

Rajiv Sharma et al.Nov 27, 2020
Abstract The process of crop breeding over the last century has delivered new varieties with increased genetic gains, resulting in higher crop performance and yield. However in many cases, the underlying alleles and genomic regions that have underpinned this success remain unknown. This is due, in part, to the difficulty in generating sufficient phenotypic data on large numbers of historical varieties to allow such analyses to be undertaken. Here we demonstrate the ability to circumvent such bottlenecks by identifying genomic regions selected over 100 years of crop breeding using the age of a variety as a surrogate for yield. Using ‘environmental genome-wide association scans’ (EnvGWAS) on variety age in two of the world’s most important crops, wheat and barley, we found strong signals of selection across the genomes of our target crops. EnvGWAS identified 16 genomic regions in barley and 10 in wheat with contrasting patterns between spring and winter types of the two crops. To further examine changes in genome structure in wheat and barley over the past century, we used the same genotypic data to derive eigenvectors for deployment in EigenGWAS. This resulted in the detection of seven major chromosomal introgressions that contributed to adaptation in wheat. The deployment of both EigenGWAS and EnvGWAS based on variety age avoids costly phenotyping and will facilitate the identification of genomic tracts that have been under selection during plant breeding in underutilized historical cultivar collections. Our results not only demonstrate the potential of using historical cultivar collections coupled with genomic data to identify chromosomal regions that have been under selection but to also guide future plant breeding strategies to maximise the rate of genetic gain and adaptation in crop improvement programs. Significance Statement 100 years of plant breeding have greatly improved crop adaptation, resilience, and productivity. Generating the trait data required for these studies is prohibitively expensive and can be impossible on large historical traits. This study reports using variety age and eigenvectors of the genomic relationship matrix as surrogate traits in GWAS to locate the genomic regions that have undergone selection during varietal development in wheat and barley. In several cases these were confirmed as associated with yield and other selected traits. The success and the simplicity of the approach means it can easily be extended to other crops with a recent recorded history of plant breeding and available genomic resources.
4
Citation3
0
Save
17

Multi-trait ensemble genomic prediction and simulations of recurrent selection highlight importance of complex trait genetic architecture in long-term genetic gains in wheat

Nick Fradgley et al.Nov 9, 2022
Abstract Cereal crop breeders have achieved considerable genetic gain in genetically complex traits, such as grain yield, while maintaining genetic diversity. However, focus on selection for yield has negatively impacted other important traits. To better understand selection within a breeding context, and how it might be optimised, we analysed genotypic and phenotypic data from a diverse, 16-founder wheat multi-parent advanced generation inter-cross (MAGIC) population. Compared to single-trait models, multi-trait ensemble genomic prediction models increased prediction accuracy for almost 90% of traits, improving grain yield prediction accuracy by 3-52%. For complex traits, non-parametric models (Random Forest) also outperformed simplified, additive models (LASSO), increasing grain yield prediction accuracy by 10-36%. Simulations of recurrent genomic selection then showed that sustained greater forward prediction accuracy optimised long-term genetic gains. Simulations of selection on grain yield found indirect responses in related traits, which involved optimisation of antagonistic trait relationships. We found multi-trait selection indices could be used to optimise undesirable relationships, such as the trade-off between grain yield and protein content, or combine traits of interest, such as yield and weed competitive ability. Simulations of phenotypic selection found that including Random Forest rather than LASSO genetic models, and multi-trait rather than single-trait models as the true genetic model, accelerated and extended long-term genetic gain whilst maintaining genetic diversity. These results suggest important roles of pleiotropy and epistasis in the wider context of wheat breeding programmes and provide insights into mechanisms for continued genetic gain in a limited genepool and optimisation of multiple traits for crop improvement.
17
Citation1
0
Save
1

Investigating the genetic control of plant development under speed breeding conditions

Nicola Rossi et al.Sep 4, 2023
Abstract Speed breeding is a powerful tool to accelerate breeding and research programmes by shortening generation time and has been widely adopted for a range of crop species. Despite its success and growing popularity with breeders the genetic basis of plant development under speed breeding remains unknown. In this study, we explored how genotypes respond in terms of developmental advancement under different photoperiod regimes in the context of speed breeding. A subset of the barley HEB-25 Nested Association Mapping population was evaluated for days to heading and maturity under two contrasting photoperiod conditions: 1) Speed Breeding (SB) consisting of 22 hours of light and 2 hours of darkness), and 2) Normal Breeding (NB) consisting of 16 hours of light and 8 hours of darkness. GWAS revealed that developmental responses under both conditions were largely controlled by two loci: PPDH-1 and ELF3 . Allelic variants at these genes determine whether plants display early flowering and maturity under both NB and SB. At key QTL regions, domesticated alleles were associated with late flowering and maturity in NB and early flowering and maturity in SB, whereas wild alleles were associated with early flowering under both conditions. We hypothesise that this may be related to the dark dependent repression of PPD-H1 by ELF3 which might be more prominent in NB conditions. Furthermore, by comparing development under two contrasting photoperiod regimes, we were able to derive an estimate of plasticity for the two traits. Interestingly, plasticity in development was largely attributed to allelic variation at ELF3. Our results have important implications for our understanding and optimisation of speed breeding protocols particularly when incorporating genetics from wild relatives into breeding programmes and the design of breeding programmes to support the delivery of climate resilient crops.
1

Analysis of historical selection in winter wheat

Chin Yang et al.Jan 8, 2022
Abstract Winter wheat is a major crop with a rich selection history in the modern era of crop breeding. Genetic gains across economically important traits like yield have been well characterized and are the major force driving its production. Winter wheat is also an excellent model for analyzing historical genetic selection. As a proof of concept, we analyze two major collections of winter wheat varieties that were bred in western Europe from 1916 to 2010, namely the Triticeae Genome (TG) and WAGTAIL panels, which include 333 and 403 varieties respectively. We develop and apply a selection mapping approach, Regression of Alleles on Years (RALLY), in these panels, as well as in simulated populations. RALLY maps loci under sustained historical selection by using a simple logistic model to regress allele counts on years of variety release. To control for drift-induced allele frequency change, we develop a hybrid approach of genomic control and delta control. Within the TG panel, we identify 22 significant RALLY quantitative selection loci (QSLs) and estimate the local heritabilities for 12 traits across these QSLs. By correlating predicted marker effects with RALLY regression estimates, we show that alleles whose frequencies have increased over time are heavily biased towards conferring positive yield effect, but negative effects in flowering time, lodging, plant height and grain protein content. Altogether, our results (1) demonstrate the use of RALLY to identify selected genomic regions while controlling for drift, and (2) reveal key patterns in the historical selection in winter wheat and guide its future breeding. Key Message Modelling of the distribution of allele frequency over year of variety release identifies major loci involved in historical breeding of winter wheat.
Load More