WF
Wei Feng
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
University of Virginia, Chinese Academy of Medical Sciences & Peking Union Medical College, Hebei Medical University
+ 7 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
4
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
30

Cell-specific chromatin landscape of human coronary artery resolves regulatory mechanisms of disease risk

Adam Turner et al.Oct 24, 2023
+20
J
S
A
Abstract Coronary artery disease (CAD) is a complex inflammatory disease involving genetic influences across several cell types. Genome-wide association studies (GWAS) have identified over 170 loci associated with CAD, where the majority of risk variants reside in noncoding DNA sequences impacting cis -regulatory elements (CREs). Here, we applied single-cell ATAC-seq to profile 28,316 cells across coronary artery segments from 41 patients with varying stages of CAD, which revealed 14 distinct cellular clusters. We mapped ~320,000 accessible sites across all cells, identified cell type-specific elements, transcription factors, and prioritized functional CAD risk variants via quantitative trait locus and sequence-based predictive modeling. We identified a number of candidate mechanisms for smooth muscle cell transition states and identified putative binding sites for risk variants. We further employed CRE to gene linkage to nominate disease-associated key driver transcription factors such as PRDM16 and TBX2. This single cell atlas provides a critical step towards interpreting cis -regulatory mechanisms in the vessel wall across the continuum of CAD risk.
15

Single-cell RNA-seq analysis of human coronary arteries using an enhanced workflow reveals SMC transitions and candidate drug targets

Wei Feng et al.Oct 24, 2023
+5
A
C
W
Abstract Background and Aims The atherosclerotic plaque microenvironment is highly complex, and selective agents that modulate plaque stability or other plaque phenotypes are not yet available. We sought to investigate the human atherosclerotic cellular environment using scRNA-seq to uncover potential therapeutic approaches. We aimed to make our workflow user-friendly, reproducible, and applicable to other disease-specific scRNA-seq datasets. Methods Here we incorporate automated cell labeling, pseudotemporal ordering, ligand-receptor evaluation, and drug-gene interaction analysis into an enhanced and reproducible scRNA-seq analysis workflow. Notably, we also developed an R Shiny based interactive web application to enable further exploration and analysis of the scRNA dataset. Results We applied this analysis workflow to a human coronary artery scRNA dataset and revealed distinct derivations of chondrocyte-like and fibroblast-like cells from smooth muscle cells (SMCs), and show the key changes in gene expression along their de-differentiation path. We highlighted several key ligand-receptor interactions within the atherosclerotic environment through functional expression profiling and revealed several attractive avenues for future pharmacological repurposing in precision medicine. Further, our interactive web application, PlaqView ( www.plaqview.com ), allows other researchers to easily explore this dataset and benchmark applicable scRNA-seq analysis tools without prior coding knowledge. Conclusions These results suggest novel effects of chemotherapeutics on the atherosclerotic cellular environment and provide future avenues of studies in precision medicine. This publicly available workflow will also allow for more systematic and user-friendly analysis of scRNA datasets in other disease and developmental systems. PlaqView allows for rapid visualization and analysis of atherosclerosis scRNA-seq datasets without the need of prior coding experience. Future releases of PlaqView will feature additional larger scRNA-seq and scATAC-seq atherosclerosis-related datasets, thus providing a critical resource for the field by promoting data harmonization and biological interpretation.
1

The meningeal transcriptional response to traumatic brain injury and aging

Ashley Bolte et al.Oct 24, 2023
+4
A
D
A
ABSTRACT Emerging evidence suggests that the meningeal compartment plays instrumental roles in various neurological disorders and can modulate neurodevelopment and behavior. While this has sparked great interest in the meninges, we still lack fundamental knowledge about meningeal biology. Here, we utilized high-throughput RNA sequencing (RNA-seq) techniques to investigate the transcriptional response of the meninges to traumatic brain injury (TBI) and aging in the sub-acute and chronic time frames. Using single-cell RNA sequencing (scRNA-seq), we first explored how mild TBI affects the cellular and transcriptional landscape in the meninges in young mice at one week post-injury. Then, using bulk RNA sequencing, we assessed the differential long-term outcomes between young and aged mice following a TBI. In our scRNA-seq studies, we found that mild head trauma leads to an activation of type I interferon (IFN) signature genes in meningeal macrophages as well as the mobilization of multiple distinct sub-populations of meningeal macrophages expressing hallmarks of either classically activated or wound healing macrophages. We also revealed that dural fibroblasts in the meningeal compartment are highly responsive to TBI, and pathway analysis identified differential expression of genes linked to various neurodegenerative diseases. For reasons that remain poorly understood, the elderly are especially vulnerable to head trauma, where even mild injuries can lead to rapid cognitive decline and devastating neuropathology. To better understand the differential outcomes between the young and the elderly following brain injury, we performed bulk RNA-seq on young and aged meninges from mice that had received a mild TBI or Sham treatment 1.5 months prior. Notably, we found that aging alone induced massive upregulation of meningeal genes involved in antibody production by B cells and type I IFN signaling. Following injury, the meningeal transcriptome had largely returned to its pre-injury signature in young mice. In stark contrast, aged TBI mice still exhibited massive upregulation of immune-related genes and markedly reduced expression of genes involved in extracellular matrix remodeling and maintenance of cellular junctions. Overall, these findings illustrate the dynamic and complex transcriptional response of the meninges to mild head trauma. Moreover, we also reveal how aging modulates the meningeal response to TBI.