The caudal part of the striatum, also named the tail of the striatum (TS), defines a fourth striatal domain. Determining whether rewarding, aversive and salient stimuli regulate the activity of striatal spiny projections neurons (SPNs) of the TS is therefore of paramount importance to understand its functions, which remain largely elusive. Taking advantage of genetically encoded biosensors (A-kinase activity reporter 3, AKAR3) to record PKA signals and by analyzing the distribution of dopamine D1R- and D2R-SPNs in the TS, we characterized three subterritories: a D2R/A2aR-lacking, a D1R/D2R-intermingled and a D1R/D2R-SPNs-enriched area (corresponding to the amygdalostriatal transition). In addition, we provide evidence that the distribution of D1R- and D2R-SPNs in the TS is evolutionarily conserved (mouse, rat, gerbil). The in vivo analysis of extracellular signal–regulated kinase (ERK) phosphorylation in these TS subterritories in response to distinct appetitive, aversive and pharmacological stimuli revealed that SPNs of the TS are not recruited by stimuli triggering innate aversive responses, fasting, satiety or palatable signals whereas a reduction in ERK phosphorylation occurred following learned avoidance. In contrast, D1R-SPNs of the intermingled and D2R/A2aR-lacking areas were strongly activated by both D1R agonists and psychostimulant drugs (d-amphetamine, cocaine, MDMA or methylphenidate), but not by hallucinogens. Finally, a similar pattern of ERK activation was observed by blocking selectively dopamine reuptake. Together, our results reveal that the caudal TS might participate in the processing of specific reward signals and discrete aversive stimuli.Abbreviations serotonin (5-HT), adenosine A2a receptor (A2aR), A-kinase activity reporter 3 (AKAR3), amygdalostriatal transition area (AST), cyclic adenosine monophosphate (cAMP), dopamine D1 receptor (D1R), dopamine D2 receptor (D2R), dopamine (DA), dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa (DARPP-32), dopamine transporter (DAT), 2,5-dimethoxy-4-iodoamphetamine (DOI), dorsal striatum (DS), enhanced green fluorescence protein (eGFP), extracellular signal-regulated kinase (ERK), high-fat high sugar (HFHS), lateral geniculate nucleus of the thalamus (LGN), medial geniculate nucleus of the thalamus (MGN), 3,4-methylenedioxy methamphetamine (MDMA), norepinephrine (NE), norepinephrine transporter (NET), phencyclidine (PCP), phosphodiesterase type 4 (PDE4), phosphodiesterase type 10 (PDE10A), protein kinase A (PKA), pentylenetetrazole (PTZ), rostral part of the dorsal striatum (rDS), red fluorescent protein (RFP), Research Resource Identifier (RRID), serotonin transporter (SERT), striatal projection neurons (SPNs), substantia nigra pars compacta (SNc), 2,3,5-Trimethyl-3-thiazoline (TMT), tail of the striatum (TS), vesicular glutamate transporter type 2 (VGLUT2), ventral posterior nucleus (VPN).