JZ
Junhu Zhang
Author with expertise in Synthesis and Applications of Carbon Quantum Dots
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(22% Open Access)
Cited by:
12,709
h-index:
62
/
i10-index:
204
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up‐Conversion Bioimaging Applications

Shoujun Zhu et al.Jul 20, 2012
Abstract The bandgap in graphene‐based materials can be tuned from 0 eV to that of benzene by changing size and/or surface chemistry, making it a rising carbon‐based fluorescent material. Here, the surface chemistry of small size graphene (graphene quantum dots, GQDs) is tuned programmably through modification or reduction and green luminescent GQDs are changed to blue luminescent GQDs. Several tools are employed to characterize the composition and morphology of resultants. More importantly, using this system, the luminescence mechanism (the competition between both the defect state emission and intrinsic state emission) is explored in detail. Experiments demonstrate that the chemical structure changes during modification or reduction suppresses non‐radiative recombination of localized electron‐hole pairs and/or enhances the integrity of surface π electron network. Therefore the intrinsic state emission plays a leading role, as opposed to defect state emission in GQDs. The results of time‐resolved measurements are consistent with the suggested PL mechanism. Up‐conversion PL of GQDs is successfully applied in near‐IR excitation for bioimaging.
0

Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging

Shoujun Zhu et al.Feb 28, 2013
Angewandte ChemieVolume 125, Issue 14 p. 4045-4049 Zuschrift Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging† Shoujun Zhu, Shoujun Zhu State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorQingnan Meng, Qingnan Meng State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorLei Wang, Lei Wang State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorProf. Junhu Zhang, Prof. Junhu Zhang State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorYubin Song, Yubin Song State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorHan Jin, Han Jin School of Stomatology, Jilin University, Changchun, 130041 (P. R. China)Search for more papers by this authorProf. Kai Zhang, Prof. Kai Zhang State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorProf. Hongchen Sun, Prof. Hongchen Sun School of Stomatology, Jilin University, Changchun, 130041 (P. R. China)Search for more papers by this authorProf. Haiyu Wang, Prof. Haiyu Wang State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorProf. Bai Yang, Corresponding Author Prof. Bai Yang [email protected] State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this author Shoujun Zhu, Shoujun Zhu State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorQingnan Meng, Qingnan Meng State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorLei Wang, Lei Wang State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorProf. Junhu Zhang, Prof. Junhu Zhang State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorYubin Song, Yubin Song State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorHan Jin, Han Jin School of Stomatology, Jilin University, Changchun, 130041 (P. R. China)Search for more papers by this authorProf. Kai Zhang, Prof. Kai Zhang State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorProf. Hongchen Sun, Prof. Hongchen Sun School of Stomatology, Jilin University, Changchun, 130041 (P. R. China)Search for more papers by this authorProf. Haiyu Wang, Prof. Haiyu Wang State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this authorProf. Bai Yang, Corresponding Author Prof. Bai Yang [email protected] State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (P. R. China)Search for more papers by this author First published: 28 February 2013 https://doi.org/10.1002/ange.201300519Citations: 717 † This work was supported by the National Science Foundation of China (21221063, 91123031, 50973039, 30830108, 81271111, 21222406) and the National Basic Research Program of China (2012CB933800). Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Farbenspiele: Polymerartige Kohlenstoffpunkte (CDs) können schnell und in großen Mengen hergestellt werden. Mit ca. 80 % erzielen die CDs die bisher höchsten Quantenausbeuten für fluoreszierende Kohlenstoffmaterialien, woraus sich Anwendungsmöglichkeiten in Vielfarben-Musterbildung und Biosensoren ergeben könnten. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description ange_201300519_sm_miscellaneous_information.pdf2.2 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 1aL. Cao, M. J. Meziani, S. Sahu, Y. P. Sun, Acc. Chem. Res. 2013, 46, 171–180; 10.1021/ar300128j CASPubMedWeb of Science®Google Scholar 1bS. N. Baker, G. A. Baker, Angew. Chem. 2010, 122, 6876–6896; 10.1002/ange.200906623 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 6726–6744; 10.1002/anie.200906623 CASPubMedWeb of Science®Google Scholar 1cH. Li, Z. Kang, Y. Liu, S. T. Lee, J. Mater. Chem. 2012, 22, 24230–24253. 10.1039/c2jm34690g CASWeb of Science®Google Scholar 2Y. Fang, S. Guo, D. Li, C. Zhu, W. Ren, S. Dong, E. Wang, ACS Nano 2012, 6, 400–409. 10.1021/nn2046373 CASPubMedWeb of Science®Google Scholar 3X. Wang, L. Cao, S. T. Yang, F. Lu, M. J. Meziani, L. Tian, K. W. Sun, M. A. Bloodgood, Y. P. Sun, Angew. Chem. 2010, 122, 5438–5442; 10.1002/ange.201000982 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 5310–5314. 10.1002/anie.201000982 CASPubMedWeb of Science®Google Scholar 4R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, Angew. Chem. 2009, 121, 4668–4671; 10.1002/ange.200900652 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 4598–4601. 10.1002/anie.200900652 CASPubMedWeb of Science®Google Scholar 5M. J. Krysmann, A. Kelarakis, P. Dallas, E. P. Giannelis, J. Am. Chem. Soc. 2012, 134, 747–750. 10.1021/ja204661r CASPubMedWeb of Science®Google Scholar 6H. Liu, T. Ye, C. Mao, Angew. Chem. 2007, 119, 6593–6595; 10.1002/ange.200701271 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 6473–6475. 10.1002/anie.200701271 CASPubMedWeb of Science®Google Scholar 7X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li, L. Dai, W. Liu, Chem. Commun. 2012, 48, 7955–7957. 10.1039/c2cc33869f CASPubMedWeb of Science®Google Scholar 8D. Pan, J. Zhang, Z. Li, C. Wu, X. Yan, M. Wu, Chem. Commun. 2010, 46, 3681–3683. 10.1039/c000114g CASPubMedWeb of Science®Google Scholar 9H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, J. Liu, S. Lian, C. H. A. Tsang, X. Yang, S. T. Lee, Angew. Chem. 2010, 122, 4532–4536; 10.1002/ange.200906154 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 4430–4434. 10.1002/anie.200906154 CASPubMedWeb of Science®Google Scholar 10L. Bao, Z. L. Zhang, Z. Q. Tian, L. Zhang, C, Liu, Y. Lin, B. Qi, D. W. Pang, Adv. Mater. 2011, 23, 5801–5806. 10.1002/adma.201102866 CASPubMedWeb of Science®Google Scholar 11B. Kong, A. Zhu, C. Ding, X. Zhao, B. Li, Y. Tian, Adv. Mater. 2012, 24, 5844–5848. 10.1002/adma.201202599 CASPubMedWeb of Science®Google Scholar 12A. Krueger, Adv. Mater. 2008, 20, 2445–2449. 10.1002/adma.200701856 CASWeb of Science®Google Scholar 13K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, H. Dai, Nat. Nanotechnol. 2009, 4, 773–780. 10.1038/nnano.2009.294 CASPubMedWeb of Science®Google Scholar 14J. Jeong, M. Cho, Y. T. Lim, N. W. Song, B. H. Chung, Angew. Chem. 2009, 121, 5400–5403; 10.1002/ange.200901750 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 5296–5299. 10.1002/anie.200901750 CASPubMedWeb of Science®Google Scholar 15K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2010, 2, 1015–1024. 10.1038/nchem.907 CASPubMedWeb of Science®Google Scholar 16 16aS. Zhu, S. Tang, J. Zhang, B. Yang, Chem. Commun. 2012, 48, 4527–4539; 10.1039/c2cc31201h CASPubMedWeb of Science®Google Scholar 16bS. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Chem. Commun. 2011, 47, 6858–6860; 10.1039/c1cc11122a CASPubMedWeb of Science®Google Scholar 16cS. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu, B. Yang, RSC Adv. 2012, 2, 2717–2720. 10.1039/c2ra20182h CASWeb of Science®Google Scholar 17S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, X. Wang, H. Sun, B. Yang, Adv. Funct. Mater. 2012, 22, 4732–4740. 10.1002/adfm.201201499 CASWeb of Science®Google Scholar 18S. Zhuo, M. Shao, S. T. Lee, ACS Nano 2012, 6, 1059–1064. 10.1021/nn2040395 CASPubMedWeb of Science®Google Scholar 19V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, S. Chand, J. Am. Chem. Soc. 2011, 133, 9960–9963. 10.1021/ja2036749 CASPubMedWeb of Science®Google Scholar 20X. Feng, V. Marcon, W. Pisula, M. R. Hansen, J. Kirkpatrick, F. Grozema, D. Andrienko, K. Kremer, K. Müllen, Nat. Mater. 2009, 8, 421–426. 10.1038/nmat2427 CASPubMedWeb of Science®Google Scholar 21X. Yan, X. Cui, L. Li, J. Am. Chem. Soc. 2010, 132, 5944–5945. 10.1021/ja1009376 CASPubMedWeb of Science®Google Scholar 22J. Wang, C. F. Wang, S. Chen, Angew. Chem. 2012, 124, 9431–9435; 10.1002/ange.201204381 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 9297–9301. 10.1002/anie.201204381 CASPubMedWeb of Science®Google Scholar 23S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, Angew. Chem. 2012, 124, 12381–12384; 10.1002/ange.201206791 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 12215–12218. 10.1002/anie.201206791 CASPubMedWeb of Science®Google Scholar 24F. Wang, Z. Xie, H. Zhang, C. Liu, Y. Zhang, Adv. Funct. Mater. 2011, 21, 1027–1031. 10.1002/adfm.201002279 CASWeb of Science®Google Scholar 25Z. C. Yang, M. Wang, A. M. Yong, S. Y. Wong, X. H. Zhang, H. Tan, A. Y. Chang, X. Li, J. Wang, Chem. Commun. 2011, 47, 11615–11617. 10.1039/c1cc14860e CASPubMedWeb of Science®Google Scholar 26Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, Y. Liu, Chem. Commun. 2012, 48, 380–382. 10.1039/C1CC15678K CASPubMedWeb of Science®Google Scholar 27C. Zhu, J. Zhai, S. Dong, Chem. Commun. 2012, 48, 9367–9369. 10.1039/c2cc33844k CASPubMedWeb of Science®Google Scholar 28S. Sahu, B. Behera, T. K. Maiti, S. Mohapatra, Chem. Commun. 2012, 48, 8835–8837. 10.1039/c2cc33796g CASPubMedWeb of Science®Google Scholar 29S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A. M. Asiri, A. O. A-Youbi, X. Sun, Adv. Mater. 2012, 24, 2037–2041. 10.1002/adma.201200164 CASPubMedWeb of Science®Google Scholar 30X. Jia, J. Li, E. Wang, Nanoscale 2012, 4, 5572–5575. 10.1039/c2nr31319g CASPubMedWeb of Science®Google Scholar 31X. Zhang, S. Wang, L. Xu, L. Feng, Y. Ji, L, Tao, S. Li, Y. Wei, Nanoscale 2012, 4, 5581–5584. 10.1039/c2nr31281f CASPubMedWeb of Science®Google Scholar 32J. Shang, L. Ma, J. Li, W. Ai, T. Yu, G. G. Gurzadyan, Sci. Rep. 2012, 2, 792. 10.1038/srep00792 CASPubMedWeb of Science®Google Scholar 33 33aJ. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York, 2006; 10.1007/978-0-387-46312-4 CASGoogle Scholar 33bS. Zhu, J. Zhang, L. Wang, Y. Song, G. Zhang, B. Yang, Chem. Commun. 2012, 48, 10889–10891. 10.1039/c2cc36080b CASPubMedWeb of Science®Google Scholar 34Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Carbon 2012, 50, 4738–4743. 10.1016/j.carbon.2012.06.002 CASWeb of Science®Google Scholar 35Q. Mei, Z. Zhang, Angew. Chem. 2012, 124, 5700–5704; 10.1002/ange.201201389 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 5602–5606. 10.1002/anie.201201389 CASPubMedWeb of Science®Google Scholar 36D. Wang, L, Wang, X. Dong, Z. Shi, J. Jin, Carbon 2012, 50, 2147–2154. 10.1016/j.carbon.2012.01.021 CASWeb of Science®Google Scholar 37E. F. Wesp, W. R. Brode, J. Am. Chem. Soc. 1934, 56, 1037–1042. 10.1021/ja01320a009 CASWeb of Science®Google Scholar Citing Literature Volume125, Issue14April 2, 2013Pages 4045-4049 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
0

Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots

Lei Wang et al.Feb 12, 2014
Carbon nanodots (C-dots) synthesized by electrochemical ablation and small molecule carbonization, as well as graphene quantum dots (GQDs) fabricated by solvothermally cutting graphene oxide, are three kinds of typical green fluorescence carbon nanomaterials. Insight into the photoluminescence origin in these fluorescent carbon nanomaterials is one of the important matters of current debates. Here, a common origin of green luminescence in these C-dots and GQDs is unraveled by ultrafast spectroscopy. According to the change of surface functional groups during surface chemical reduction experiments, which are also accompanied by obvious emission-type transform, these common green luminescence emission centers that emerge in these C-dots and GQDs synthesized by bottom-up and top-down methods are unambiguously assigned to special edge states consisting of several carbon atoms on the edge of carbon backbone and functional groups with C═O (carbonyl and carboxyl groups). Our findings further suggest that the competition among various emission centers (bright edge states) and traps dominates the optical properties of these fluorescent carbon nanomaterials.
0

Control the size and surface chemistry of graphene for the rising fluorescent materials

Shoujun Zhu et al.Jan 1, 2012
Fluorescent graphene-based materials, labelled as a sort of fluorescent carbon-based nanomaterial, have drawn increasing attention in recent years. When the size and structure of graphene were controlled properly, photoluminescence was induced in graphene, resulting in the so-called fluorescent graphene (FG). FG has a size-, defect-, and wavelength-dependent luminescence emission, which is similar to traditional semiconductor-based quantum dots. Moreover, with excellent chemical stability, fine biocompatibility, low toxicity, up-conversion emission, pH-sensitivity and resistance to photobleaching, FG promises to offer substantial applications in numerous areas: bioimaging, photovoltaics, sensors, etc. Currently, research works have allowed FG to be produced by many approaches ranging from simple oxidation of graphene to cutting carbon sources and organic synthesis from small molecules. In this Feature Article, we summarize the reported fluorescent graphenes, with emphasis on their category, properties, synthesis and applications. Meanwhile, we give a perspective on their subsequent developments and compare the features of FG and other fluorescent carbon-based materials.
Load More