WS
William Stocker
Author with expertise in Fertility Preservation in Cancer Patients
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
7
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Oocyte and cumulus cell cooperativity and metabolic plasticity under the direction of oocyte paracrine factors

Dulama Richani et al.Sep 5, 2022
ABSTRACT Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during maturation altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, while mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content, whilst maintaining ATP homeostasis. Collectively, these data demonstrate that OSFs remodel cumulus cell metabolism during oocyte maturation in preparation for ensuing fertilization and embryonic development. HIGHLIGHTS During oocyte maturation, oocyte-secreted factors promote cell cooperativity between the oocyte and cumulus cells by altering the molecular composition of both cell types. Oocyte-secreted factors downregulate protein catabolic processes, and upregulate DNA binding, translation, and ribosome assembly in oocytes. Oocyte-secreted factors alter mitochondrial number, morphology, and function in cumulus cells. Oocyte-secreted factors further enhance metabolic plasticity in cumulus cells by upregulating anabolic pathways for macromolecules and small molecule organics. The oocyte, via oocyte-secreted factors, instructs cumulus cells to increase metabolic workload on its behalf, thereby subduing oocyte metabolism.
1
Citation4
0
Save
0

Oocyte and cumulus cell cooperativity and metabolic plasticity under the direction of oocyte paracrine factors

Dulama Richani et al.Jan 10, 2024
Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during mouse oocyte maturation in vitro altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, whereas mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content while maintaining ATP homeostasis. Collectively, these data demonstrate that cumulin and BMP15 remodel cumulus cell metabolism, instructing them to upregulate their anabolic metabolic processes, while routine cellular functions are minimized in the oocyte during maturation, in preparation for ensuing embryonic development.
0
Citation2
0
Save
3

Effects of lactate, super-GDF9 and low oxygen tension during biphasic in vitro maturation on the bioenergetic profiles of mouse cumulus-oocyte-complex

Nazlı Akin et al.Nov 10, 2022
ABSTRACT In vitro maturation (IVM) is an alternative assisted reproductive technology (ART) with reduced hormone related side-effects and treatment burden compared to conventional IVF. Capacitation (CAPA)-IVM is a biphasic IVM system with improved clinical outcomes compared to standard monophasic IVM. Yet, CAPA-IVM efficiency compared to conventional IVF is still suboptimal in terms of producing utilizable blastocysts. Previously we have shown that CAPA-IVM leads to a precocious increase in cumulus cell (CC) glycolytic activity during cytoplasmic maturation. In the current study, considering the fundamental importance of CCs for oocyte maturation and cumulus-oocyte complex (COC) microenvironment, we further analyzed the bioenergetic profiles of maturing CAPA-IVM COCs. Through a multi-step approach, we (i) explored mitochondrial function of the in vivo and CAPA-IVM matured COCs through real-time metabolic analysis with Seahorse analyzer; and to improve COC metabolism (ii) supplemented the culture media with lactate and/or super-GDF9 (an engineered form of growth differentiation factor 9) and (iii) reduced culture oxygen tension. Our results indicated that the pre-IVM step is delicate and prone to culture related disruptions. Lactate and/or super-GDF9 supplementations failed to eliminate pre-IVM induced stress on COC glucose metabolism and mitochondrial respiration. However, when performing pre-IVM culture under 5% oxygen tension, CAPA-IVM COCs showed a similar bioenergetic profiles compared to in vivo matured counterparts. This is the first study providing real-time metabolic analysis of the COCs from a biphasic IVM system. The currently used analytical approach provides the quantitative measures and the rational basis to further improve IVM culture requirements.
3
Citation1
0
Save