BN
Brett Nixon
Author with expertise in Male Reproductive Health
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(73% Open Access)
Cited by:
1,481
h-index:
54
/
i10-index:
156
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome analysis of the platypus reveals unique signatures of evolution

Wesley Warren et al.May 1, 2008
We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. The duck-billed platypus (Ornithorhynchus anatinus) is a unique egg-laying mammal, with lactation, venom and a bill. It even has an electro­sensory system for foraging underwater. Platypuses are monotremes descended from the most basal branch of the mammalian lineage and combine aspects of both reptilian and mammalian biology. Now an international consortium reports the sequence and analysis of the platypus genome. It is an amalgam of reptilian, mammalian and its own unique characteristics that provides clues to the function and evolution of all mammalian genomes. As well as helping uncover the origins of genomic imprinting, analyses show that platypus and reptile venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved; and immune gene family expansions are directly related to platypus biology. The sequence provides an invaluable resource for comparative genomics, and it will be important for monotreme conservation. The cover image shows the bill with electro­sensory pits, eye and ear opening behind the eye. Platypuses are monotremes and combine aspects of both reptilian and mammalian behaviour. An international consortium reports the genome sequence and analysis of Ornithorhynchus anatinus and as expected, parts of the genome look more like mammals, whereas other parts more like reptiles or even chickens.
0
Citation703
0
Save
0

DNA Damage in Human Spermatozoa Is Highly Correlated with the Efficiency of Chromatin Remodeling and the Formation of 8-Hydroxy-2′-Deoxyguanosine, a Marker of Oxidative Stress1

Geoffry Iuliis et al.Jun 4, 2009
DNA damage in human spermatozoa has been associated with a range of adverse clinical outcomes, including infertility, abortion, and disease in the offspring. We have advanced a two-step hypothesis to explain this damage involving impaired chromatin remodeling during spermiogenesis followed by a free radical attack to induce DNA strand breakage. The objective of the present study was to test this hypothesis by determining whether impaired chromatin protamination is correlated with oxidative base damage and DNA fragmentation in human spermatozoa. DNA fragmentation, chromatin protamination, mitochondrial membrane potential, and formation of the oxidative base adduct, 8-hydroxy-2′-deoxyguanosine (8OHdG), were monitored by flow cytometry/fluorescence microscopy. Impairment of DNA protamination during late spermatogenesis was highly correlated (P < 0.001) with DNA damage in human spermatozoa. The disruption of chromatin remodeling also was associated with a significant elevation in the levels of 8OHdG (P < 0.001), and the latter was itself highly correlated with DNA fragmentation (P < 0.001). The significance of oxidative stress in 8OHdG formation was demonstrated experimentally using H2O2/Fe2+ and by the correlation observed between this base adduct and superoxide generation (P < 0.001). That 8OHdG formation was inversely associated with mitochondrial membrane potential (P < 0.001) suggested a possible role for these organelles in the creation of oxidative stress. These results clearly highlight the importance of oxidative stress in the induction of sperm DNA damage and carry significant implications for the clinical management of this condition.
0
Citation388
0
Save
0

Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome

Jackson Reilly et al.Aug 23, 2016
Recent evidence has shown that the sperm epigenome is vulnerable to dynamic modifications arising from a variety of paternal environment exposures and that this legacy can serve as an important determinant of intergenerational inheritance. It has been postulated that such exchange is communicated to maturing spermatozoa via the transfer of small non-protein-coding RNAs (sRNAs) in a mechanism mediated by epididymosomes; small membrane bound vesicles released by the soma of the male reproductive tract (epididymis). Here we confirm that mouse epididymosomes encapsulate an impressive cargo of >350 microRNAs (miRNAs), a developmentally important sRNA class, the majority (~60%) of which are also represented by the miRNA signature of spermatozoa. This includes >50 miRNAs that were found exclusively in epididymal sperm and epididymosomes, but not in the surrounding soma. We also documented substantial changes in the epididymosome miRNA cargo, including significant fold changes in almost half of the miRNAs along the length of the epididymis. Finally, we provide the first direct evidence for the transfer of several prominent miRNA species between mouse epididymosomes and spermatozoa to afford novel insight into a mechanism of intercellular communication by which the sRNA payload of sperm can be selectively modified during their post-testicular maturation.
0
Citation194
0
Save
0

The MicroRNA Signature of Mouse Spermatozoa Is Substantially Modified During Epididymal Maturation1

Brett Nixon et al.Sep 3, 2015
In recent years considerable effort has been devoted to understanding the epigenetic control of sperm development, leading to an increased appreciation of the importance of RNA interference pathways, and in particular miRNAs, as key regulators of spermatogenesis and epididymal maturation. It has also been shown that sperm are endowed with an impressive array of miRNA that have been implicated in various aspects of fertilization and embryo development. However, to date there have been no reports on whether the sperm miRNA signature is static or whether it is influenced by their prolonged maturation within the male reproductive tract. To investigate this phenomenon, we employed next-generation sequencing to systematically profile the miRNA signature of maturing mouse spermatozoa. In so doing we have provided the first evidence for the posttesticular modification of the sperm miRNA profile under normal physiological conditions. Such modifications include the apparent loss and acquisition of an impressive cohort of some 113 and 115 miRNAs, respectively, between the proximal and distal epididymal segments. Interestingly, the majority of these changes occur late in maturation and include the uptake of novel miRNA species in addition to a significant increase in many miRNAs natively expressed in immature sperm. Because sperm are not capable of de novo transcription, these findings identify the epididymis as an important site in establishing the sperm epigenome with the potential to influence the peri-conceptual environment of the female reproductive tract, contribute to the inheritance of acquired characteristics, and/or alter the developmental trajectory of the resulting offspring.
0
Citation188
0
Save
1

Oocyte and cumulus cell cooperativity and metabolic plasticity under the direction of oocyte paracrine factors

Dulama Richani et al.Sep 5, 2022
ABSTRACT Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during maturation altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, while mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content, whilst maintaining ATP homeostasis. Collectively, these data demonstrate that OSFs remodel cumulus cell metabolism during oocyte maturation in preparation for ensuing fertilization and embryonic development. HIGHLIGHTS During oocyte maturation, oocyte-secreted factors promote cell cooperativity between the oocyte and cumulus cells by altering the molecular composition of both cell types. Oocyte-secreted factors downregulate protein catabolic processes, and upregulate DNA binding, translation, and ribosome assembly in oocytes. Oocyte-secreted factors alter mitochondrial number, morphology, and function in cumulus cells. Oocyte-secreted factors further enhance metabolic plasticity in cumulus cells by upregulating anabolic pathways for macromolecules and small molecule organics. The oocyte, via oocyte-secreted factors, instructs cumulus cells to increase metabolic workload on its behalf, thereby subduing oocyte metabolism.
1
Citation4
0
Save
4

Blockade of redox second messengers inhibits JAK/STAT and MEK/ERK signaling sensitizing FLT3-mutant acute myeloid leukemia to targeted therapies

Zacary Germon et al.Mar 12, 2022
Abstract FLT3-mutations are diagnosed in 25-30% of patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is associated with the overproduction of reactive oxygen species (ROS), which drives genomic instability through the oxidation of DNA bases, promoting clonal evolution, treatment resistance and poor outcomes. ROS are also important second messengers, triggering cysteine oxidation in redox sensitive signaling proteins, however, the specific pathways influenced by ROS in AML remain enigmatic. Here we have surveyed the posttranslational architecture of primary AML patient samples and assessed oncogenic second messenger signaling. Signaling proteins responsible for growth and proliferation were differentially oxidized and phosphorylated between patient subtypes either harboring recuring mutation in FLT3 compared to patients expressing the wildtype-FLT3 receptor, particularly those mapping to the Src family kinases (SFKs). Patients harboring FLT3-mutations also showed increased oxidative posttranslational modifications in the GTPase Rac activated-NADPH oxidase-2 (NOX2) complex to drive autocratic ROS production. Pharmacological and molecular inhibition of NOX2 was cytotoxic specifically to FLT3-mutant AMLs, and reduced phosphorylation of the critical hematopoietic transcription factor STAT5 and MAPK/ERK to synergistically increase sensitivity to FLT3-inhibitors. NOX2 inhibition also reduced phosphorylation and cysteine oxidation of FLT3 in patient derived xenograft mouse models in vivo , highlighting an important link between oxidative stress and oncogenic signaling. Together, these data raise the promising possibility of targeting NOX2 in combination with FLT3-inhibitors to improve treatment of FLT3-mutant AML. One Sentence Summary FLT3-precision therapies have entered the clinic for AML however, their durability is limited. Here we identify the Rac-NOX2 complex as the major driver of redox second messenger signaling in FLT3-mutant AML. Molecular and pharmacological inhibition of NOX2 decreased FLT3, STAT5 and MEK/ERK signaling to delay leukemia progression, and synergistically combined with FLT3 inhibitors.
4
Citation2
0
Save
0

Oocyte and cumulus cell cooperativity and metabolic plasticity under the direction of oocyte paracrine factors

Dulama Richani et al.Jan 10, 2024
Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during mouse oocyte maturation in vitro altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, whereas mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content while maintaining ATP homeostasis. Collectively, these data demonstrate that cumulin and BMP15 remodel cumulus cell metabolism, instructing them to upregulate their anabolic metabolic processes, while routine cellular functions are minimized in the oocyte during maturation, in preparation for ensuing embryonic development.
0
Citation2
0
Save
0

Sub-chronic elevation in ambient temperature drives alterations to the sperm epigenome and accelerates early embryonic development in mice

Natalie Trigg et al.Jul 23, 2024
Forecasted increases in the prevalence and severity of extreme weather events accompanying changes in climatic behavior pose potential risk to the reproductive capacity of humans and animals of ecological and agricultural significance. While several studies have revealed that heat stress induced by challenges such as testicular insulation can elicit a marked negative effect on the male reproductive system, and particularly the production of spermatozoa, less is known about the immediate impact on male reproductive function following sub-chronic whole-body exposure to elevated ambient temperature. To address this knowledge gap, we exposed unrestrained male mice to heat stress conditions that emulate a heat wave (daily cycle of 8 h at 35°C followed by 16 h at 25°C) for a period of seven days. Neither the testes or epididymides of heat exposed male mice exhibited evidence of gross histological change, and similarly, spermatozoa of exposed males retained their functionality and ability to support embryonic development. However, the embryos generated from heat exposed spermatozoa experienced pronounced changes in gene expression linked to acceleration of early embryo development, aberrant blastocyst hatching and increased fetal weight. Such changes were causally associated with an altered sperm small non-coding RNA (sncRNA) profile, such that these developmental phenotypes were recapitulated by microinjection of wild-type embryos sired by control spermatozoa with RNAs extracted from heat exposed spermatozoa. Such data highlight that even a relatively modest excursion in ambient temperature can affect male reproductive function and identify the sperm sncRNA profile as a particular point of vulnerability to this imposed environmental stress.
3

CONDITIONALLY MUTANT ANIMAL MODEL FOR INVESTIGATING THE INVASIVE TROPHOBLAST CELL LINEAGE

Khursheed Iqbal et al.Aug 5, 2023
ABSTRACT Placental development involves coordinated expansion and differentiation of trophoblast cell lineages possessing specialized functions. Among the differentiated trophoblast cell lineages are invasive trophoblast cells, which exit the placenta and invade into the uterus where they restructure the uterine parenchyma and facilitate remodeling of uterine spiral arteries. The rat exhibits deep intrauterine trophoblast cell invasion, a feature shared with human placentation, and is also amenable to gene manipulation using genome editing techniques. In this investigation, we generated a conditional rat model targeting the invasive trophoblast cell lineage. Prolactin family 7, subfamily b, member 1 ( Prl7b1 ) is uniquely and abundantly expressed in the rat invasive trophoblast cell lineage. Disruption of Prl7b1 did not adversely affect placental development. We demonstrated that the Prl7b1 locus could be effectively used to drive the expression of Cre recombinase in invasive trophoblast cells. Our rat model represents a new tool for investigating candidate genes contributing to the regulation of invasive trophoblast cells and their contributions to trophoblast-guided uterine spiral artery remodeling.
Load More