Abstract Tumours face tryptophan (Trp) depletion, but the mechanisms sustaining protein biosynthesis under Trp stress remain unclear. We report that Trp stress increases the levels of the translation repressor EIF4EBP1. Yet, at the same time, EIF4EBP1 is selectively phosphorylated by the metabolic master regulator MTORC1 kinase, preventing EIF4EBP1 from inhibiting translation. MTORC1 activity under Trp stress is unexpected because the absence of amino acids is typically linked with MTORC1 inhibition. EIF4EBP1-sensitive translation in Trp starved cells is sustained by EGFR and RAS signalling to MTORC1. Via this mechanism, Trp stress enhances the synthesis and activity of the aryl hydrocarbon receptor (AHR). This is noteworthy as Trp catabolites are known to activate AHR, and therefore Trp stress was previously considered to inhibit AHR. Trp stress-induced AHR enhances the expression of key regulators of autophagy, which sustains intracellular Trp levels and Trp-charged tRNAs for translation. Hence, Trp stress switches MTORC1 from its established inhibitory function into an enhancer of autophagy, acting through AHR. The clinical potential of this fundamental mechanism is highlighted by the activity of the mTORC1-AHR pathway and an autophagy signature in 20% of glioblastoma patients, opening up new avenues for cancer therapy.