CG
Clotilde Garrido
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
3
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Converting antimicrobial into targeting peptides reveals key features governing protein import into mitochondria and chloroplasts

Oliver Caspari et al.Dec 3, 2021
Summary We asked what peptide features govern targeting to the mitochondria versus the chloroplast using antimicrobial peptides as a starting point. This approach was inspired by the endosymbiotic hypothesis that organelle-targeting peptides derive from antimicrobial amphipathic peptides delivered by the host cell, to which organelle progenitors became resistant. To explore the molecular changes required to convert antimicrobial into targeting peptides, we expressed a set of 13 antimicrobial peptides in Chlamydomonas reinhardtii . Peptides were systematically modified to test distinctive features of mitochondrial and chloroplast targeting peptides, and we assessed their targeting potential by following the intracellular localization and maturation of a Venus fluorescent reporter used as cargo protein. Mitochondrial targeting can be achieved by some unmodified antimicrobial peptide sequences. Targeting to both organelles is improved by replacing Lysines with Arginines. Chloroplast targeting is enabled by the presence of flanking unstructured sequences, additional constraints consistent with chloroplast endosymbiosis having occurred in a cell that already contained mitochondria. If indeed targeting peptides evolved from antimicrobial peptides, required modifications imply a temporal evolutionary scenario with an early exchange of cationic residues, and a late acquisition of chloroplast specific motifs.
1
Paper
Citation3
0
Save
22

Telomerase-independent survival leads to a mosaic of complex subtelomere rearrangements inChlamydomonas reinhardtii

Frédéric Chaux et al.Jan 23, 2023
Abstract Telomeres and subtelomeres, the genomic regions located at chromosome extremities, are essential for genome stability in eukaryotes. In the absence of the canonical maintenance mechanism provided by telomerase, telomere shortening induces genome instability. The landscape of the ensuing genome rearrangements is not accessible by short-read sequencing. Here, we leverage Oxford Nanopore Technologies long-read sequencing to survey the extensive repertoire of genome rearrangements in telomerase mutants of the model green microalga Chlamydomonas reinhardtii . In telomerase mutant strains grown for ∼700 generations, most chromosome extremities were capped by short telomere sequences that were either recruited de novo from other loci or maintained in a telomerase-independent manner. Other extremities did not end with telomeres but only with repeated subtelomeric sequences. The subtelomeric elements, including rDNA, were massively rearranged and involved in breakage-fusion-bridge cycles, translocations, recombinations and chromosome circularization. These events were established progressively over time and displayed heterogeneity at the subpopulation level. New telomere-capped extremities composed of sequences originating from more internal genomic regions were associated with high DNA methylation, suggesting that de novo heterochromatin formation contributes to restore chromosome end stability in C. reinhardtii . The diversity of alternative strategies to maintain chromosome integrity and the variety of rearrangements found in telomerase mutants are remarkable and illustrate genome plasticity at short timescales.