SK
Staffan Kjelleberg
Author with expertise in Bacterial Biofilms and Quorum Sensing Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
31
(87% Open Access)
Cited by:
13,061
h-index:
118
/
i10-index:
359
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms

Marie Allesen‐Holm et al.Dec 12, 2005
Summary Pseudomonas aeruginosa produces extracellular DNA which functions as a cell‐to‐cell interconnecting matrix component in biofilms. Comparison of extracellular DNA and chromosomal DNA by the use of polymerase chain reaction and Southern analysis suggested that the extracellular DNA is similar to whole‐genome DNA. Evidence that the extracellular DNA in P. aeruginosa biofilms and cultures is generated via lysis of a subpopulation of the bacteria was obtained through experiments where extracellular β‐galactosidase released from lacZ ‐containing P. aeruginosa strains was assessed. Experiments with the wild type and lasIrhlI , pqsA , pqsL and fliMpilA mutants indicated that the extracellular DNA is generated via a mechanism which is dependent on acyl homoserine lactone and Pseudomonas quinolone signalling, as well as on flagella and type IV pili. Microscopic investigation of flow chamber‐grown wild‐type P. aeruginosa biofilms stained with different DNA stains suggested that the extracellular DNA is located primarily in the stalks of mushroom‐shaped multicellular structures, with a high concentration especially in the outer part of the stalks forming a border between the stalk‐forming bacteria and the cap‐forming bacteria. Biofilms formed by lasIrhlI , pqsA and fliMpilA mutants contained less extracellular DNA than biofilms formed by the wild type, and the mutant biofilms were more susceptible to treatment with sodium dodecyl sulphate than the wild‐type biofilm.
0
Citation1,028
0
Save
0

Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

Morten Hentzer et al.Jan 1, 2002
Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR by expression of an unstable version of the green-fluorescent protein (Gfp). Gfp-based reporter technology has been applied for non-destructive, single-cell-level detection of quorum sensing in laboratory-based P. aeruginosa biofilms. It is reported that a synthetic halogenated furanone compound, which is a derivative of the secondary metabolites produced by the Australian macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production of important virulence factors, indicating a general effect on target genes of the las quorum sensing circuit. The furanone was applied to P. aeruginosa biofilms established in biofilm flow chambers. The Gfp-based analysis reveals that the compound penetrates microcolonies and blocks cell signalling and quorum sensing in most biofilm cells. The compound did not affect initial attachment to the abiotic substratum. It does, however, affect the architecture of the biofilm and enhances the process of bacterial detachment, leading to a loss of bacterial biomass from the substratum.
0
Citation995
0
Save
0

Bacterial community assembly based on functional genes rather than species

Catherine Burke et al.Aug 8, 2011
The principles underlying the assembly and structure of complex microbial communities are an issue of long-standing concern to the field of microbial ecology. We previously analyzed the community membership of bacterial communities associated with the green macroalga Ulva australis , and proposed a competitive lottery model for colonization of the algal surface in an attempt to explain the surprising lack of similarity in species composition across different algal samples. Here we extend the previous study by investigating the link between community structure and function in these communities, using metagenomic sequence analysis. Despite the high phylogenetic variability in microbial species composition on different U. australis (only 15% similarity between samples), similarity in functional composition was high (70%), and a core of functional genes present across all algal-associated communities was identified that were consistent with the ecology of surface- and host-associated bacteria. These functions were distributed widely across a variety of taxa or phylogenetic groups. This observation of similarity in habitat (niche) use with respect to functional genes, but not species, together with the relative ease with which bacteria share genetic material, suggests that the key level at which to address the assembly and structure of bacterial communities may not be “species” (by means of rRNA taxonomy), but rather the more functional level of genes.
0
Citation776
0
Save
0

Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa

Nicolas Barraud et al.Oct 18, 2006
ABSTRACT Bacterial biofilms at times undergo regulated and coordinated dispersal events where sessile biofilm cells convert to free-swimming, planktonic bacteria. In the opportunistic pathogen Pseudomonas aeruginosa , we previously observed that dispersal occurs concurrently with three interrelated processes within mature biofilms: (i) production of oxidative or nitrosative stress-inducing molecules inside biofilm structures, (ii) bacteriophage induction, and (iii) cell lysis. Here we examine whether specific reactive oxygen or nitrogen intermediates play a role in cell dispersal from P. aeruginosa biofilms. We demonstrate the involvement of anaerobic respiration processes in P. aeruginosa biofilm dispersal and show that nitric oxide (NO), used widely as a signaling molecule in biological systems, causes dispersal of P. aeruginosa biofilm bacteria. Dispersal was induced with low, sublethal concentrations (25 to 500 nM) of the NO donor sodium nitroprusside (SNP). Moreover, a P. aeruginosa mutant lacking the only enzyme capable of generating metabolic NO through anaerobic respiration (nitrite reductase, Δ nirS ) did not disperse, whereas a NO reductase mutant (Δ norCB ) exhibited greatly enhanced dispersal. Strategies to induce biofilm dispersal are of interest due to their potential to prevent biofilms and biofilm-related infections. We observed that exposure to SNP (500 nM) greatly enhanced the efficacy of antimicrobial compounds (tobramycin, hydrogen peroxide, and sodium dodecyl sulfate) in the removal of established P. aeruginosa biofilms from a glass surface. Combined exposure to both NO and antimicrobial agents may therefore offer a novel strategy to control preestablished, persistent P. aeruginosa biofilms and biofilm-related infections.
0
Citation721
0
Save
0

Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

Mette Burmølle et al.Jun 1, 2006
Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed versus nonexposed biofilms) of the four-species biofilm was markedly higher than that in any of the single-species biofilms. Moreover, in biofilms established on glass surfaces in flow cells and subjected to invasion by the antibacterial protein-producing Pseudoalteromonas tunicata, the four-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.
0
Citation662
0
Save
0

Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein

Michael Manefield et al.Feb 1, 1999
Summary: Acylated homoserine lactone (AHL)-mediated gene expression controls phenotypes involved in colonization, often specifically of higher organisms, in both marine and terrestrial environments. The marine red alga Delisea pulchra produces halogenated furanones which resemble AHLs structurally and show inhibitory activity at ecologically realistic concentrations in AHL bioassays. Evidence is presented that halogenated furanones displace tritiated OHHL [N-3- (oxohexanoy1)-L-homoserine lactone] from Escherichia coli cells overproducing LuxR with potencies corresponding to their respective inhibitory activities in an AHL-regulated bioluminescence assay, indicating that this is the mechanism by which furanones inhibit AHL-dependent phenotypes. Alternative mechanisms for this phenomenon are also addressed. General metabolic disruption was assessed with two-dimensional PAGE, revealing limited non- AHL-related effects. A direct chemical interaction between the algal compounds and AHLs, as monitored by 1H NMR spectroscopy, was shown not to occur in vitro. These results support the contention that furanones, at the concentrations produced by the alga, can control bacterial colonization of surfaces by specifically interfering with AHL-mediated gene expression at the level of the LuxR protein.
0
Citation600
0
Save
0

Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover

Michael Manefield et al.Apr 1, 2002
N-acyl-L-homoserine lactones (AHLs) are co-regulatory ligands required for control of the expression of genes encoding virulence traits in many Gram-negative bacterial species. Recent studies have indicated that AHLs modulate the cellular concentrations of LuxR-type regulatory proteins by binding and fortifying these proteins against proteolytic degradation (Zhu & Winans, 2001 R43 ). Halogenated furanones produced by the macroalga Delisea pulchra inhibit AHL-dependent gene expression. This study assayed for an in vivo interaction between a tritiated halogenated furanone and the LuxR protein of Vibrio fischeri overproduced in Escherichia coli. Whilst a stable interaction between the algal metabolite and the bacterial protein was not found, it was noted by Western analysis that the half-life of the protein is reduced up to 100-fold in the presence of halogenated furanones. This suggests that halogenated furanones modulate LuxR activity but act to destabilize, rather than protect, the AHL-dependent transcriptional activator. The furanone-dependent reduction in the cellular concentration of the LuxR protein was associated with a reduction in expression of a plasmid encoded P luxI –gfp(ASV) fusion suggesting that the reduction in LuxR concentration is the mechanism by which furanones control expression of AHL-dependent phenotypes. The mode of action by which halogenated furanones reduce cellular concentrations of the LuxR protein remains to be characterized.
0
Citation574
0
Save
Load More