LX
Limin Xiang
Author with expertise in Fluorescence Microscopy Techniques
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
2
h-index:
26
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
44

Excitation spectral microscopy for highly multiplexed fluorescence imaging and quantitative biosensing

Kun Chen et al.Apr 13, 2021
K
L
R
K
Abstract The multiplexing capability of fluorescence microscopy is severely limited by the broad fluorescence spectral width. Spectral imaging offers potential solutions, yet typical approaches to disperse the local emission spectra notably impede the attainable throughput. Here we show that using a single, fixed fluorescence emission detection band, through frame-synchronized fast scanning of the excitation wavelength from a white lamp via an acousto-optic tunable filter (AOTF), up to 6 subcellular targets, labeled by common fluorophores of substantial spectral overlap, can be simultaneously imaged in live cells with low (∼1%) crosstalks and high temporal resolutions (down to ∼10 ms). The demonstrated capability to quantify the abundances of different fluorophores in the same sample through unmixing the excitation spectra next enables us to devise novel, quantitative imaging schemes for both bi-state and FRET (Förster resonance energy transfer) fluorescent biosensors in live cells. We thus achieve high sensitivities and spatiotemporal resolutions in quantifying the mitochondrial matrix pH and intracellular macromolecular crowding, and further demonstrate, for the first time, the multiplexing of absolute pH imaging with three additional target organelles/proteins to elucidate the complex, Parkin-mediated mitophagy pathway. Together, excitation spectral microscopy provides exceptional opportunities for highly multiplexed fluorescence imaging. The prospect of acquiring fast spectral images without the need for fluorescence dispersion or care for the spectral response of the detector offers tremendous potential.
44
Citation1
0
Save
0

Super-resolution displacement mapping of unbound single molecules reveals nanoscale heterogeneities in intracellular diffusivity

Limin Xiang et al.Feb 25, 2019
+2
K
W
L
Abstract Intracellular diffusion underlies vital processes of the cell. However, it remains difficult to elucidate how an average-sized protein diffuses in the cell with good spatial resolution and sensitivity. Here we report single-molecule displacement/diffusivity mapping (SM d M), a super-resolution strategy that enables the nanoscale mapping of intracellular diffusivity through the local statistics of instantaneous displacements of freely diffusing single molecules. We thus show that diffusion in the cytoplasm and in the nucleus to both be spatially heterogeneous at the nanoscale, and such variations in local diffusivity correlate strongly with the ultrastructure of the actin cytoskeleton and the chromosome, respectively. Moreover, we identify the net charge of the diffuser as a key determinant of diffusion rate: intriguingly, the possession of positive, but not negative, net charges significantly impedes diffusion, and the exact degree of slowdown is determined by the specific subcellular environments.
6

Single-molecule displacement mapping indicates unhindered intracellular diffusion of small (<~1 kDa) solutes

Alexander Choi et al.Jan 26, 2023
K
W
L
A
Abstract While fundamentally important, the intracellular diffusion of small (<~1 kDa) solutes has been difficult to elucidate due to challenges in both labeling and measurement. Here we quantify and spatially map the translational diffusion patterns of small solutes in mammalian cells by integrating several recent advances. In particular, by executing tandem stroboscopic illumination pulses down to 400-μs separation, we extend single-molecule displacement/diffusivity mapping (SM d M), a super-resolution diffusion quantification tool, to small solutes with high diffusion coefficients D of >300 μm 2 /s. We thus show that for multiple water-soluble dyes and dye-tagged nucleotides, intracellular diffusion is dominated by vast regions of high diffusivity ~60-70% of that in vitro , up to ~250 μm 2 /s in the fastest cases. Meanwhile, we also visualize sub-micrometer foci of substantial slowdowns in diffusion, thus underscoring the importance of spatially resolving the local diffusion behavior. Together, these results suggest that the intracellular diffusion of small solutes is only modestly scaled down by the slightly higher viscosity of the cytosol over water, but otherwise not further hindered by macromolecular crowding. We thus lift a paradoxically low speed limit for intracellular diffusion suggested by previous experiments. Abstract Graphic