TG
Tom Grossmann
Author with expertise in Protein Arginine Methylation in Mammals
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(50% Open Access)
Cited by:
998
h-index:
38
/
i10-index:
68
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inhibition of oncogenic Wnt signaling through direct targeting of β-catenin

Tom Grossmann et al.Oct 15, 2012
Aberrant activation of signaling by the Wnt pathway is strongly implicated in the onset and progression of numerous types of cancer. Owing to the persistent dependence of these tumors on Wnt signaling for growth and survival, inhibition of this pathway is considered an attractive mechanism-based therapeutic approach. Oncogenic activation of Wnt signaling can ensue from a variety of distinct aberrations in the signaling pathway, but most share the common feature of causing increased cellular levels of β-catenin by interfering with its constitutive degradation. β-Catenin serves as a central hub in Wnt signaling by engaging in crucial protein–protein interactions with both negative and positive effectors of the pathway. Direct interference with these protein–protein interactions is a biologically compelling approach toward suppression of β-catenin hyperactivity, but such interactions have proven intransigent with respect to small-molecule targeting. Hence β-catenin remains an elusive target for translational cancer therapy. Here we report the discovery of a hydrocarbon-stapled peptide that directly targets β-catenin and interferes with its ability to serve as a transcriptional coactivator for T-cell factor (TCF) proteins, the downstream transcriptional regulators of the Wnt pathway.
0
Citation246
0
Save
1

Stabilisation of β-Catenin-WNT signalling by USP10 in APC-truncatedcolorectal cancer drives cancer stemness and enables super-competitor signalling

Michaela Reissland et al.Feb 11, 2023
Summary The contribution of deubiquitylating enzymes to β-Catenin stabilisation in intestinal stem cells and colorectal cancer (CRC) is poorly understood. Here, we report the deubiquitylase USP10 as an APC-truncation- specific enhancer of β-Catenin stability, potentiating WNT signalling in CRC and cancer stem cells. Mechanistically, interaction studies in various CRC cell lines and in vitro binding studies, together with computational modelling, revealed that USP10 binding to β-Catenin is mediated via the unstructured N-terminus of USP10 and requires the absence of full-length APC. Notably, loss of USP10 in CRISPR engineered intestinal organoids reduces tumorigenic properties of CRC and blocks the super competitor-signalling of APC-mutated CRC. Furthermore, reduction of USP10 induces the expression of differentiation genes, and opposes the APC-truncated phenotype in an intestinal hyperplasia model of D.melanogaster . Taken together, our findings reveal USP10s role in intestinal tumourigenesis by stabilising β-Catenin, leading to aberrant WNT signalling, enhancing cancer cell stemness and implicate the DUB USP10 as a cancer specific therapeutic vulnerability in Apc truncated CRC.
0

Single-molecule magnetic tweezers reveals that TAV2b-derived peptides underwind and stabilize double-stranded RNA

Zahid Rashid et al.Sep 8, 2024
Double-stranded RNA (dsRNA) has evolved into a key tool in understanding and regulating biological processes, with promising implications in therapeutics. However, its efficacy is often limited due to instability in biological settings. Recently, the development of peptidic dsRNA binders derived from naturally occurring RNA-binding proteins has emerged as a favorable starting point to address this limitation. Nevertheless, it remains unclear how these high affinity dsRNA binders alter the structure and flexibility of dsRNA. To this end, we employed single-molecule magnetic tweezers experiments to investigate the effects of TAV2b-derived peptidic dsRNA binders on the mechanical properties of dsRNA. Torque spectroscopy assays demonstrated that these peptides underwind dsRNA, while also stabilizing the duplex. Additionally, force spectroscopy experiments demonstrate that a wild type TAV2b peptide derivative extends the contour length and lowers the bending rigidity of dsRNA, while a homodimeric version triggers the formation of higher order complexes at forces below 1 pN. Our study presents a quantitative approach to investigate how these peptides alter the structure of dsRNA, and whether peptide structural design alters the affinity to dsRNA and its stability. This approach could inform the design of more potent and effective dsRNA binders in the efforts to advance RNA therapeutics.
0

Structural analysis of the interaction between the bacterial cell division proteins FtsQ and FtsB

Danguole Kureisaite-Ciziene et al.Jul 4, 2018
Most bacteria and archaea use similar proteins within their cell division machinery, which uses the tubulin homologue FtsZ as its central organiser. In Gram-negative Escherichia coli bacteria, FtsZ recruits cytosolic, transmembrane, periplasmic and outer membrane proteins, assembling the divisome that facilitates bacterial cell division. One such divisome component, FtsQ, a bitopic membrane protein with a globular domain in the periplasm, has been shown to interact with many other divisome proteins. Despite its otherwise unknown function, it has been shown to be a major divisome interaction hub. Here, we investigated the interactions of FtsQ with FtsB and FtsL, two small bitopic membrane proteins that act immediately downstream of FtsQ. In biochemical assays we show that the periplasmic domains of E. coli FtsB and FtsL interact with FtsQ, but not with each other. Our crystal structure of FtsB bound to the β domain of FtsQ shows that only residues 64-87 of FtsB interact with FtsQ. A synthetic peptide comprising those 24 FtsB residues recapitulates the FtsQ:FtsB interactions. Protein deletions and structure-guided mutant analyses validate the structure. Furthermore, the same structure-guided mutants show cell division defects in vivo that are consistent with our structure of the FtsQ:FtsB complex that shows their interactions as they occur during cell division. Our work provides intricate details of the interactions within the divisome and also provides a tantalising view of a highly conserved protein interaction in the periplasm of bacteria that is an excellent target for cell division inhibitor searches.
0

Identification of an H-Ras nanocluster disrupting peptide

Ganesh Manoharan et al.Jan 1, 2023
The Ras-MAPK pathway is critical to regulate cell proliferation and differentiation. Its dysregulation is implicated in the onset and progression of numerous types of cancers. To be active, Ras proteins are membrane anchored and organized into nanoclusters, which realize high-fidelity signal transmission across the plasma membrane. Nanoclusters therefore represent potential drug targets. However, targetable protein components of signalling nanoclusters are poorly established. We previously proposed that the nanocluster scaffold galectin-1 (Gal1) enhances H-Ras nanoclustering by stabilizing stacked dimers of H-Ras and Raf via a direct interaction of dimeric Gal1 with the Ras binding domain (RBD) in particular of B-Raf. Here, we provide further supportive evidence for this model. We establish that the B-Raf preference emerges from divergent regions of the Raf RBDs that were proposed to interact with Gal1. We then identify the L5UR peptide, which disrupts this interaction by binding with low micromolar affinity to the B-Raf-RBD. Its 23-mer core fragment is thus sufficient to interfere with Gal1-enhanced H-Ras nanocluster, reduce MAPK-output and cell viability in HRAS-mutant cancer cell lines. Our data therefore suggest that the interface between Gal1 and the RBD of B-Raf can be targeted to disrupt Gal1-enhanced H-Ras nanoclustering. Collectively, our results support that Raf-proteins are integral components of active Ras nanoclusters.