YF
Yilei Fu
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
2
h-index:
7
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
53

Vulcan: Improved long-read mapping and structural variant calling via dual-mode alignment

Yilei Fu et al.May 30, 2021
Abstract Background Long-read sequencing has enabled unprecedented surveys of structural variation across the entire human genome. To maximize the potential of long-read sequencing in this context, novel mapping methods have emerged that have primarily focused on either speed or accuracy. Various heuristics and scoring schemas have been implemented in widely used read mappers (minimap2 and NGMLR) to optimize for speed or accuracy, which have variable performance across different genomic regions and for specific structural variants. Our hypothesis is that constraining read mapping to the use of a single gap penalty across distinct mutational hotspots reduces read alignment accuracy and impedes structural variant detection. Findings We tested our hypothesis by implementing a read mapping pipeline called Vulcan that uses two distinct gap penalty modes, which we refer to as dual-mode alignment. The high-level idea is that Vulcan leverages the computed normalized edit distance of the mapped reads via e.g. minimap2 to identify poorly aligned reads and realigns them using the more accurate yet computationally more expensive long read mapper (NGMLR). In support of our hypothesis, we show Vulcan improves the alignments for Oxford Nanopore Technology (ONT) long-reads for both simulated and real datasets. These improvements, in turn, lead to improved accuracy for structural variant calling performance on human genome datasets compared to either of the read mapping methods alone. Conclusions Vulcan is the first long-read mapping framework that combines two distinct gap penalty modes, resulting in improved structural variant recall and precision. Vulcan is open-source and available under the MIT License at https://gitlab.com/treangenlab/vulcan
53
Citation1
0
Save
0

MethPhaser: methylation-based long-read haplotype phasing of human genomes

Yilei Fu et al.Jun 22, 2024
The assignment of variants across haplotypes, phasing, is crucial for predicting the consequences, interaction, and inheritance of mutations and is a key step in improving our understanding of phenotype and disease. However, phasing is limited by read length and stretches of homozygosity along the genome. To overcome this limitation, we designed MethPhaser, a method that utilizes methylation signals from Oxford Nanopore Technologies to extend Single Nucleotide Variation (SNV)-based phasing. We demonstrate that haplotype-specific methylations extensively exist in Human genomes and the advent of long-read technologies enabled direct report of methylation signals. For ONT R9 and R10 cell line data, we increase the phase length N50 by 78%-151% at a phasing accuracy of 83.4-98.7% To assess the impact of tissue purity and random methylation signals due to inactivation, we also applied MethPhaser on blood samples from 4 patients, still showing improvements over SNV-only phasing. MethPhaser further improves phasing across HLA and multiple other medically relevant genes, improving our understanding of how mutations interact across multiple phenotypes. The concept of MethPhaser can also be extended to non-human diploid genomes. MethPhaser is available at https://github.com/treangenlab/methphaser .
0
Citation1
0
Save
0

Olivar: automated variant aware primer design for multiplex tiled amplicon sequencing of pathogens

Michael Wang et al.Jan 1, 2023
Tiled amplicon sequencing has served as an essential tool for tracking the spread and evolution of pathogens. Over 2 million complete SARS-CoV-2 genomes are now publicly available, most sequenced and assembled via tiled amplicon sequencing. While computational tools for tiled amplicon design exist, they require downstream manual optimization both computationally and experimentally, which is slow and costly. Here we present Olivar, a first step towards a fully automated, variant-aware design of tiled amplicons for pathogen genomes. Olivar converts each nucleotide of the target genome into a numeric risk score, capturing undesired sequence features that should be avoided. In a direct comparison with PrimalScheme, we show that Olivar has fewer SNPs overlapping with primers and predicted PCR byproducts. We also compared Olivar head-to-head with ARTIC v4.1, the most widely used primer set for SARS-CoV-2 sequencing, and show Olivar yields similar read mapping rates (~90%) and better coverage to the manually designed ARTIC v4.1 amplicons. We also evaluated Olivar on real wastewater samples and found that Olivar had up to 3-fold higher mapping rates while retaining similar coverage. In summary, Olivar automates and accelerates the generation of tiled amplicons, even in situations of high mutation frequency and/or density. Olivar is available as a web application at https://olivar.rice.edu. Olivar can also be installed locally as a command line tool with Bioconda. Source code, installation guide and usage are available at https://github.com/treangenlab/Olivar.
0

deGSM: memory scalable construction of large scale de Bruijn Graph

Hongzhe Guo et al.Aug 9, 2018
Motivation: De Bruijn graph, a fundamental data structure to represent and organize genome sequence, plays important roles in various kinds of sequence analysis tasks such as de novo assembly, high-throughput sequencing (HTS) read alignment, pan-genome analysis, metagenomics analysis, HTS read correction, etc. With the rapid development of HTS data and ever-increasing number of assembled genomes, there is a high demand to construct de Bruijn graph for sequences up to Tera-base-pair level. It is non-trivial since the size of the graph to be constructed could be very large and each graph consists of hundreds of billions of vertices and edges. Current existing approaches may have unaffordable memory footprints to handle such a large de Bruijn graph. Moreover, it also requires the construction approach to handle very large dataset efficiently, even if in a relatively small RAM space. Results: We propose a lightweight parallel de Bruijn graph construction approach, de Bruijn Graph Constructor in Scalable Memory (deGSM). The main idea of deGSM is to efficiently construct the Burrows-Wheeler Transformation (BWT) of the unipaths of de Bruijn graph in constant RAM space and transform the BWT into the original unitigs. It is mainly implemented by a fast parallel external sorting of k-mers, which allows only a part of k-mers kept in RAM by a novel organization of the k-mers. The experimental results demonstrate that, just with a commonly used machine, deGSM is able to handle very large genome sequence(s), e.g., the contigs (305 Gbp) and scaffolds (1.1 Tbp) recorded in GenBank database and Picea abies HTS dataset (9.7 Tbp). Moreover, deGSM also has faster or comparable construction speed compared with state-of-the-art approaches. With its high scalability and efficiency, deGSM has enormous potentials in many large scale genomics studies.