DL
Denis Lafontaine
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(80% Open Access)
Cited by:
1,406
h-index:
53
/
i10-index:
94
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1

Sunny Sharma et al.Feb 4, 2015
The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson–Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function.
0
Citation277
0
Save
0

DNA methylation is a key mechanism for maintaining monoallelic expression on autosomes

Saumya Gupta et al.Feb 21, 2020
Abstract In diploid cells, maternal and paternal copies of genes usually have similar transcriptional activity. Mammalian allele-specific epigenetic mechanisms such as X-chromosome inactivation (XCI) and imprinting were historically viewed as rare exceptions to this rule. The discovery of mitotically stable monoallelic autosomal expression (MAE) a decade ago revealed an additional allele-specific mode regulating thousands of mammalian genes. However, despite its prevalence, the mechanistic basis of MAE remains unknown. To uncover the mechanism of MAE maintenance, we devised a small-molecule screen for reactivation of silenced alleles across multiple loci using targeted RNA sequencing. Contrary to previous reports, we identified DNA methylation as a key mechanism of MAE mitotic maintenance. In contrast with the binary choice of the active allele in XCI, stringent transcriptome-wide analysis revealed MAE as a regulatory mode with tunable control of allele-specific expression, dependent on the extent of DNA methylation. In a subset of MAE genes, allelic imbalance was insensitive to changes in DNA methylation, implicating additional mechanisms in MAE maintenance in these loci. Our findings identify a key mechanism of MAE maintenance, reveal tunability of this mode of gene regulation, and provide the essential platform for probing the biological role of MAE in development and disease.
0
Citation8
0
Save
1

Chromosome decompaction and cohesin direct Topoisomerase II activity to establish and maintain an unentangled interphase genome

Erica Hildebrand et al.Oct 16, 2022
SUMMARY The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations and multi-contact 3C, and propose that, in contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a Topoisomerase II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias Topoisomerase II activity towards decatenation. At the second stage, the loops are released, and formation of new entanglements is prevented by lower Topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed, in experiment and models, a normal interphase state cannot be acquired.
1
Citation7
0
Save
6

Systematic mapping of small nucleolar RNA targets in human cells

Hywel Dunn-Davies et al.Jul 22, 2021
ABSTRACT Altered expression of box C/D small nucleolar RNAs (snoRNAs) is implicated in human diseases, including cancer. Box C/D snoRNAs canonically direct site-specific, 2’- O -methylation but the extent to which they participate in other functions remains unclear. To identify RNA targets of box C/D snoRNAs in human cells, we applied two techniques based on UV crosslinking, proximity ligation and sequencing of RNA hybrids (CLASH and FLASH). These identified hundreds of novel snoRNA interactions with rRNA, snoRNAs and mRNAs. We developed an informatic pipeline to rigorously call interactions predicted to direct methylation. Multiple snoRNA-rRNA interactions identified were not predicted to direct RNA methylation. These potentially modulate methylation efficiency and/or contribute to folding dynamics. snoRNA-mRNA hybrids included 1,300 interactions between 117 snoRNA families and 940 mRNAs. Human U3 is substantially more abundant than other snoRNAs and represented about 50% of snoRNA-mRNA hybrids. The distribution of U3 interactions across mRNAs also differed from other snoRNAs. Following U3 depletion, mRNAs showing altered abundance were strongly enriched for U3 CLASH targets. Most human snoRNAs are excised from pre-mRNA introns. Enrichment for snoRNA association with branch point regions of introns that contain snoRNA genes was common, suggesting widespread regulation of snoRNA maturation.
6
Citation4
0
Save
1

Deep assessment of human disease-associated ribosomal RNA modifications using Nanopore direct RNA sequencing

Isabel Vries et al.Nov 10, 2021
Abstract The catalytically active component of ribosomes, rRNA, is long studied and heavily modified. However, little is known about functional and pathological consequences of changes in human rRNA modification status. Direct RNA sequencing on the Nanopore platform enables the direct assessment of rRNA modifications. We established a targeted Nanopore direct rRNA sequencing approach and applied it to CRISPR-Cas9 engineered HCT116 cells, lacking specific enzymatic activities required to establish defined rRNA base modifications. We analyzed these sequencing data along with wild type samples and in vitro transcribed reference sequences to specifically detect changes in modification status. We show for the first time that direct RNA-sequencing is feasible on smaller, i.e. Flongle, flow cells. Our targeted approach reduces RNA input requirements, making it accessible to the analysis of limited samples such as patient derived material. The analysis of rRNA modifications during cardiomyocyte differentiation of human induced pluripotent stem cells, and of heart biopsies from cardiomyopathy patients revealed altered modifications of specific sites, among them pseudouridines, 2’-O-methylation of riboses and acetylation of cytidines. Targeted direct rRNA-seq analysis with JACUSA2 opens up the possibility to analyze dynamic changes in rRNA modifications in a wide range of biological and clinical samples.
1
Citation2
0
Save
Load More