Abstract Cognitive complaints of attention/concentration problems are highly frequent in older adults with subjective cognitive decline (SCD). Functional connectivity in the cingulo-opercular network (CON-FC) supports cognitive control, tonic alertness, and visual processing speed. Thus, those complaints in SCD may reflect a decrease in CON-FC. Frontal white-matter tracts such as the forceps minor exhibit age- and SCD-related alterations and, therefore, might influence the CON-FC decrease in SCD. Here, we aimed to determine whether SCD predicts an impairment in CON-FC and whether neurite density in the forceps minor modulates that effect. To do so, we integrated cross-sectional and longitudinal analyses of multimodal data in a latent growth curve modeling approach. Sixty-nine healthy older adults (13 males; 68.33 ± 7.95 years old) underwent resting-state functional and diffusion-weighted magnetic resonance imaging, and the degree of SCD was assessed at baseline with the memory functioning questionnaire (greater score indicating more SCD). Forty-nine of the participants were further enrolled in two follow-ups, each about 18 months apart. Baseline SCD did not predict CON-FC after three years or its rate of change ( p -values > 0.092). Notably, however, the forceps minor neurite density did modulate the relation between SCD and CON-FC (intercept; b = 0.21, 95% confidence interval, CI, [0.03, 0.39], p = 0.021), so that SCD predicted a greater CON-FC decrease in older adults with relatively lower neurite density in the forceps minor. The neurite density of the forceps minor, in turn, negatively correlated with age. These results suggest that CON-FC alterations in SCD are dependent upon the forceps minor neurite density. Accordingly, these results imply modifiable age-related factors that could help delay or mitigate both age and SCD-related effects on brain connectivity.