Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
GC
Gang Chen
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
572
h-index:
15
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

XMAP: Cross-population fine-mapping by leveraging genetic diversity and accounting for confounding bias

Mingxuan Cai et al.Apr 2, 2023
Abstract Fine-mapping prioritizes risk variants identified by genome-wide association studies (GWASs), serving as a critical step to uncover biological mechanisms underlying complex traits. However, several major challenges still remain for existing fine-mapping methods. First, the strong linkage disequilibrium among variants can limit the statistical power and resolution of fine-mapping. Second, it is computationally expensive to simultaneously search for multiple causal variants. Third, the confounding bias hidden in GWAS summary statistics can produce spurious signals. To address these challenges, we develop a statistical method for cross-population fine-mapping (XMAP) by leveraging genetic diversity and accounting for confounding bias. By using cross-population GWAS summary statistics from global biobanks and genomic consortia, we show that XMAP can achieve greater statistical power, better control of false positive rate, and substantially higher computational efficiency for identifying multiple causal signals, compared to existing methods. Importantly, we show that the output of XMAP can be integrated with single-cell datasets, which greatly improves the interpretation of putative causal variants in their cellular context at single-cell resolution.
6
Citation1
0
Save
1

Leveraging the local genetic structure for trans-ancestry association mapping

Jiashun Xiao et al.Mar 27, 2022
Abstract Over the past two decades, genome-wide association studies (GWASs) have successfully advanced our understanding of genetic basis of complex traits. Despite the fruitful discovery of GWASs, most GWAS samples are collected from European populations, and these GWASs are often criticized for their lack of ancestry diversity. Trans-ancestry association mapping (TRAM) offers an exciting opportunity to fill the gap of disparities in genetic studies between non-Europeans and Europeans. Here we propose a statistical method, LOG-TRAM, to leverage the lo cal genetic architecture for TRAM. By using biobank-scale datasets, we showed that LOG-TRAM can greatly improve the statistical power of identifying risk variants in under-represented populations while producing well-calibrated p -values. We applied LOG-TRAM to the GWAS summary statistics of 29 complex traits/diseases from Biobank Japan (BBJ) and UK Biobank (UKBB), and achieved substantial gains in power (the effective sample sizes increased by 49% in average compared to the BBJ GWASs) and effective correction of confounding biases compared to existing methods. Finally, we demonstrated that LOG-TRAM can be successfully applied to identify ancestry-specific loci and the LOG-TRAM output can be further used for construction of more accurate polygenic risk scores (PRSs) in under-represented populations.