Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of Differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC, through unknown mechanisms. Here, we have defined a molecular mechanism of action for ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOV), by combining RIME proteomic analysis and ChIP-Seq mapping of genomic binding sites. Remarkably, these studies have revealed novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage and regulating DNA damage signalling. Clinical analysis demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair pathways. These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOV.