EM
Elisabetta Manduchi
Author with expertise in Regulation of Chromatin Structure and Function
University of Pennsylvania, Children's Hospital of Philadelphia, Cancer Research Institute
+ 16 more
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
11
(45% Open Access)
Cited by:
0
h-index:
31
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

G6PC2 controls glucagon secretion by defining the setpoint for glucose in pancreatic α-cells

Varun Bahl et al.Oct 24, 2023
+10
R
E
V
Abstract Impaired glucose suppression of glucagon secretion (GSGS) is a hallmark of type 2 diabetes. A critical role for α-cell intrinsic mechanisms in regulating glucagon secretion was previously established through genetic manipulation of the glycolytic enzyme glucokinase (GCK) in mice. Genetic variation at the G6PC2 locus, encoding an enzyme that opposes GCK, has been reproducibly associated with fasting blood glucose and hemoglobin A1c levels. Here, we find that trait-associated variants in the G6PC2 promoter are located in open chromatin not just in β− but also in α-cells, and document allele-specific G6PC2 expression of linked variants in human α– cells. Using α-cell specific gene ablation of G6pc2 in mice, we show that this gene plays a critical role in controlling glucagon secretion independent of alterations in insulin output, islet hormone content, or islet morphology; findings we confirmed in primary human α-cells. Collectively, our data demonstrate that G6PC2 impacts glycemic control via its action in α-cells and suggest that G6PC2 inhibitors could help control blood glucose through a novel, bi-hormonal mechanism.
0

Human follicular helper T cell promoter connectomes reveal novel genes and regulatory elements at SLE GWAS loci

Chun Su et al.May 7, 2020
+12
A
M
C
Systemic lupus erythematosus (SLE) is a complex inflammatory disease mediated by autoreactive antibodies that damages multiple tissues in children and adults. Genome-wide association studies (GWAS) have statistically implicated hundreds of loci in the susceptibility to human disease, including SLE, but the majority have failed to identify the causal variants or the effector genes. As a physicochemical approach to detecting functional variants and connecting them to target genes, we generated comprehensive, high-resolution maps of SLE variant accessibility and gene connectivity in the context of the three-dimensional chromosomal architecture of human tonsillar follicular helper T cells (TFH), a cell type required for the production of anti-nuclear antibodies characteristic of SLE. These spatial epigenomic maps identified a shortlist of over 400 potentially functional variants across 48 GWAS-implicated SLE loci. Twenty percent of these variants were located in open promoters of highly-expressed TFH genes, while 80% reside in non-promoter genomic regions that are connected in 3D to genes that likewise tend to be highly expressed in TFH. Importantly, we find that 90% of SLE-associated variants exhibit spatial proximity to genes that are not nearby in the 1D sequence of the genome, and over 60% of variants skip the nearest gene to physically interact only with the promoters of distant genes. Gene ontology confirmed that genes in spatial proximity to SLE variants reside in highly SLE-relevant networks, including accessible variants that loop 200-1000 kb to interact with the promoters of the canonical TFH genes BCL6 and CXCR5. CRISPR-Cas9 genome editing confirmed that these variants reside in novel, distal regulatory elements required for normal BCL6 and CXCR5 expression by T cells. Furthermore, SLE-associated SNP-promoter interactomes implicated a set of novel genes with no known role in TFH or SLE disease biology, including the homeobox-interacting protein kinase HIPK1 and the Ste kinase homolog MINK1. Targeting these kinases in primary human TFH cells inhibited production of IL-21, a requisite cytokine for production of class-switched antibodies by B cells. This 3D-variant-to-gene mapping approach gives mechanistic insight into the SLE-associated regulatory architecture of the human genome.
0

Genome-scale Capture C promoter interaction analysis implicates novel effector genes at GWAS loci for bone mineral density

Alessandra Chesi et al.May 7, 2020
+9
M
Y
A
Osteoporosis is a devastating disease with an essential genetic component. Genome wide association studies (GWAS) have discovered genetic variants robustly associated with bone mineral density (BMD), however they only report genomic signals and not necessarily the precise localization of culprit effector genes. Therefore, we sought to carry out physical and direct 'variant to gene mapping' in a relevant primary human cell type. We developed 'SPATIaL-seq' (genome-Scale, Promoter-focused Analysis of chromaTIn Looping), a massively parallel, high resolution Capture-C based method to simultaneously characterize the genome-wide interactions of all human promoters. By intersecting our SPATIaL-seq and ATAC-seq data from human mesenchymal progenitor cell-derived osteoblasts, we observed consistent contacts between candidate causal variants and putative target gene promoters in open chromatin for ~30% of the 110 BMD loci investigated. Knockdown of two novel implicated genes, ING3 at 'CPED1-WNT16' and EPDR1 at 'STARD3NL', had pronounced inhibitory effects on osteoblastogenesis. Our approach therefore aids target discovery in osteoporosis and can be applied to other common genetic diseases.
0

Genetic And Epigenetic Fine Mapping Of Complex Trait Associated Loci In The Human Liver

Minal Çalışkan et al.May 7, 2020
+20
H
E
M
Deciphering the impact of genetic variation on gene regulation is fundamental to understanding common, complex human diseases. Although histone modifications are important markers of gene regulatory regions of the genome, any specific histone modification has not been assayed in more than a few individuals in the human liver. As a result, the impacts of genetic variation that direct histone modification states in the liver are poorly understood. Here, we generate the most comprehensive genome-wide dataset of two epigenetic marks, H3K4me3 and H3K27ac, and annotate thousands of putative regulatory elements in the human liver. We integrate these findings with genome-wide gene expression data collected from the same human liver tissues and high-resolution promoter-focused chromatin interaction maps collected from human liver-derived HepG2 cells. We demonstrate widespread functional consequences of natural genetic variation on putative regulatory element activity and gene expression levels. Leveraging these extensive datasets, we fine-map a total of 77 GWAS loci that have been associated with at least one complex phenotype. Our results contribute to the repertoire of genes and regulatory mechanisms governing complex disease development and further the basic understanding of genetic and epigenetic regulation of gene expression in the human liver tissue.
0

Collapse of the hepatic gene regulatory network in the absence of FoxA factors

Yitzhak Reizel et al.May 7, 2020
+6
L
A
Y
The FoxA transcription factors are critical for liver development through their pioneering activity, which initiates a highly complex regulatory network thought to become progressively resistant to the loss of any individual hepatic transcription factor via mutual redundancy. To investigate the dispensability of FoxA factors for maintaining this regulatory network, we ablated all FoxA genes in the adult mouse liver. Remarkably, loss of FoxA caused rapid hepatocyte dedifferentiation manifested by a massive reduction in the expression of key liver genes. Interestingly, expression of these genes was reduced back to the low levels of the fetal prehepatic endoderm stage, leading to necrosis and lethality within days. Mechanistically, we found FoxA proteins to be required for maintaining enhancer activity, chromatin accessibility, nucleosome positioning and binding by HNF4a. Thus, the FoxA factors act continuously, guarding hepatic enhancer activity throughout life.
0

A dementia-associated risk variant near TMEM106B alters chromatin architecture and gene expression

Michael Gallagher et al.May 7, 2020
+10
P
M
M
Neurodegenerative diseases pose an extraordinary threat to the world's aging population, yet no disease-modifying therapies are available. While genome-wide association studies (GWAS) have identified hundreds of novel risk loci for neurodegeneration, the mechanisms by which these loci influence disease risk are largely unknown. Indeed, of the many thousands of SNP-trait associations identified by GWAS over the past 10 years, very few are understood mechanistically. Here, we investigate the association of common genetic variants at the 7p21 locus with risk for the neurodegenerative disease frontotemporal lobar degeneration. We show that variants associated with disease risk correlate with increased brain expression of the 7p21 gene TMEM106B, and no other genes. Furthermore, incremental increases in TMEM106B levels result in incremental increases in lysosomal phenotypes and cell toxicity. We then combine fine-mapping, bioinformatics, and bench-based approaches to functionally characterize all candidate causal variants at this locus. This approach identified a noncoding variant, rs1990620, which differentially recruits CTCF, influencing CTCF-mediated long-range chromatin looping interactions between multiple cis-regulatory elements, including the TMEM106B promoter. Our findings thus provide an in-depth analysis of the 7p21 locus linked by GWAS to frontotemporal lobar degeneration, nominating a causal variant and a causal mechanism for allele-specific expression and disease association at this locus. Finally, we show that genetic variants associated with risk for neurodegenerative diseases beyond frontotemporal lobar degeneration are enriched in brain CTCF-binding sites genome-wide, implicating CTCF-mediated gene regulation in risk for neurodegeneration more generally.
1

Embedding covariate adjustments in tree-based automated machine learning for biomedical big data analyses

Elisabetta Manduchi et al.Oct 24, 2023
+2
J
W
E
Abstract Background A typical task in bioinformatics consists of identifying which features are associated with a target outcome of interest and building a predictive model. Automated machine learning (AutoML) systems such as the Tree-based Pipeline Optimization Tool (TPOT) constitute an appealing approach to this end. However, in biomedical data, there are often baseline characteristics of the subjects in a study or batch effects that need to be adjusted for in order to better isolate the effects of the features of interest on the target. Thus, the ability to perform covariate adjustments becomes particularly important for applications of AutoML to biomedical big data analysis. Results We present an approach to adjust for covariates affecting features and/or target in TPOT. Our approach is based on regressing out the covariates in a manner that avoids ‘leakage’ during the cross-validation training procedure. We then describe applications of this approach to toxicogenomics and schizophrenia gene expression data sets. The TPOT extensions discussed in this work are available at https://github.com/EpistasisLab/tpot/tree/v0.11.1-resAdj . Conclusions In this work, we address an important need in the context of AutoML, which is particularly crucial for applications to bioinformatics and medical informatics, namely covariate adjustments. To this end we present a substantial extension of TPOT, a genetic programming based AutoML approach. We show the utility of this extension by applications to large toxicogenomics and differential gene expression data. The method is generally applicable in many other scenarios from the biomedical field.
0

Integrative genomics identifies lncRNA regulatory networks across 1,044 pediatric leukemias and extra-cranial solid tumors

Apexa Modi et al.Jun 11, 2024
+18
K
G
A
Abstract Long non-coding RNAs (lncRNAs) play an important role in gene regulation and contribute to tumorigenesis. While pan-cancer studies of lncRNA expression have been performed for adult malignancies, the lncRNA landscape across pediatric cancers remains largely uncharted. Here, we curate RNA sequencing data for 1,044 pediatric leukemia and solid tumors and integrate paired tumor whole genome sequencing and epigenetic data in relevant cell line models to explore lncRNA expression, regulation, and association with cancer. We report a total of 2,657 robustly expressed lncRNAs across six pediatric cancers, including 1,142 exhibiting histotype-specific expression. DNA copy number alterations contributed to lncRNA dysregulation at a proportion comparable to protein coding genes. Application of a multi-dimensional framework to identify and prioritize lncRNAs impacting gene networks revealed that lncRNAs dysregulated in pediatric cancer are associated with proliferation, metabolism, and DNA damage hallmarks. Analysis of upstream regulation via cell-type specific transcription factors further implicated distinct histotype-specific and developmental lncRNAs. We integrated our analyses to prioritize lncRNAs for experimental validation and showed that silencing of TBX2-AS1 , our top-prioritized neuroblastoma-specific lncRNA, resulted in significant growth inhibition of neuroblastoma cells, confirming our computational predictions. Taken together, these data provide a comprehensive characterization of lncRNA regulation and function in pediatric cancers and pave the way for future mechanistic studies.
1

Genetic analysis of coronary artery disease using tree-based automated machine learning informed by biology-based feature selection

Elisabetta Manduchi et al.Oct 24, 2023
J
W
T
E
Abstract Machine Learning (ML) approaches are increasingly being used in biomedical applications. Important challenges of ML include choosing the right algorithm and tuning the parameters for optimal performance. Automated ML (AutoML) methods, such as Tree-based Pipeline Optimization Tool (TPOT), have been developed to take some of the guesswork out of ML thus making this technology available to users from more diverse backgrounds. The goals of this study were to assess applicability of TPOT to genomics and to identify combinations of single nucleotide polymorphisms (SNPs) associated with coronary artery disease (CAD), with a focus on genes with high likelihood of being good CAD drug targets. We leveraged public functional genomic resources to group SNPs into biologically meaningful sets to be selected by TPOT. We applied this strategy to data from the UK Biobank, detecting a strikingly recurrent signal stemming from a group of 28 SNPs. Importance analysis of these uncovered functional relevance of the top SNPs to genes whose association with CAD is supported in the literature and other resources. Furthermore, we employed game-theory based metrics to study SNP contributions to individual level TPOT predictions and discover distinct clusters of well-predicted CAD cases. The latter indicates a promising approach towards precision medicine.
1

Alpha cell dysfunction in early type 1 diabetes

Nicolai Doliba et al.Oct 24, 2023
+15
J
A
N
Summary Multiple islet autoantibodies (AAb) predict type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in just ∼15% of single AAb+ (generally against glutamic acid decarboxylase, GADA+) individuals; hence the single GADA+ state may represent an early stage of T1D amenable to interventions. Here, we functionally, histologically, and molecularly phenotype human islets from non-diabetic, GADA+ and T1D donors. Similar to the few remaining beta cells in T1D islets, GADA+ donor islets demonstrated a preserved insulin secretory response. By contrast, alpha cell glucagon secretion was dysregulated in both T1D and GADA+ islets with impaired glucose suppression of glucagon secretion. Single cell RNA sequencing (scRNASeq) of GADA+ alpha cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of PKIB , providing a molecular basis for the loss of glucose suppression and the increased effect of IBMX observed in GADA+ donor islets. The striking observation of a distinct early defect in alpha cell function that precedes beta cell loss in T1D suggests that not only overt disease, but also the progression to T1D itself, is bihormonal in nature.
Load More