SB
Stefan Britsch
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
1,963
h-index:
24
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The transcription factor Sox10 is a key regulator of peripheral glial development

Stefan Britsch et al.Jan 1, 2001
+5
D
D
S
The molecular mechanisms that determine glial cell fate in the vertebrate nervous system have not been elucidated. Peripheral glial cells differentiate from pluripotent neural crest cells. We show here that the transcription factor Sox10 is a key regulator in differentiation of peripheral glial cells. In mice that carry a spontaneous or a targeted mutation of Sox10 , neuronal cells form in dorsal root ganglia, but Schwann cells or satellite cells are not generated. At later developmental stages, this lack of peripheral glial cells results in a severe degeneration of sensory and motor neurons. Moreover, we show that Sox10 controls expression of ErbB3 in neural crest cells. ErbB3 encodes a Neuregulin receptor, and down-regulation of ErbB3 accounts for many changes in development of neural crest cells observed in Sox10 mutant mice. Sox10 also has functions not mediated by ErbB3, for instance in the melanocyte lineage. Phenotypes observed in heterozygous mice that carry a targeted Sox10 null allele reproduce those observed in heterozygous Sox10 Dom mice. Haploinsufficiency of Sox10 can thus cause pigmentation and megacolon defects, which are also observed in Sox10 Dom /+ mice and in patients with Waardenburg-Hirschsprung disease caused by heterozygous SOX10 mutations.
0
Citation859
0
Save
0

Sensory Nerves Determine the Pattern of Arterial Differentiation and Blood Vessel Branching in the Skin

Yoh‐suke Mukouyama et al.Jun 1, 2002
+2
S
D
Y
Nerves and blood vessels are branched structures, but whether their branching patterns are established independently or coordinately is not clear. Here we show that arteries, but not veins, are specifically aligned with peripheral nerves in embryonic mouse limb skin. Mutations that eliminate peripheral sensory nerves or Schwann cells prevent proper arteriogenesis, while those that disorganize the nerves maintain the alignment of arteries with misrouted axons. In vitro, sensory neurons or Schwann cells can induce arterial marker expression in isolated embryonic endothelial cells, and VEGF164/120 is necessary and sufficient to mediate this induction. These data suggest that peripheral nerves provide a template that determines the organotypic pattern of blood vessel branching and arterial differentiation in the skin, via local secretion of VEGF.
0

Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy

C. Özcelik et al.Jun 18, 2002
+6
B
B
C
The ErbB2 ( Her2 ) proto-oncogene encodes a receptor tyrosine kinase, which is frequently amplified and overexpressed in human tumors. ErbB2 provides the target for a novel and effective antibody-based therapy (Trastuzumab/Herceptin) used for the treatment of mammary carcinomas. However, cardiomyopathies develop in a proportion of patients treated with Trastuzumab, and the incidence of such complications is increased by combination with standard chemotherapy. Gene ablation studies have previously demonstrated that the ErbB2 receptor, together with its coreceptor ErbB4 and the ligand Neuregulin-1, are essential for normal development of the heart ventricle. We use here Cre- lox P technology to mutate ErbB2 specifically in ventricular cardiomyocytes. Conditional mutant mice develop a severe dilated cardiomyopathy, with signs of cardiac dysfunction generally appearing by the second postnatal month. We infer that signaling from the ErbB2 receptor, which is enriched in T-tubules in cardiomyocytes, is crucial for adult heart function. Conditional ErbB2 mutant mice provide a model of dilated cardiomyopathy. In particular, they will allow a rigorous assessment of the role of ErbB2 in the heart and provide insight into the molecular mechanisms that underlie the adverse effects of anti-ErbB2 antibodies.
0
Citation456
0
Save
17

The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons

Marianna Tolve et al.Sep 1, 2021
+14
N
A
M
Midbrain dopaminergic (mDA) neurons are diverse in their projection targets, effect on behavior, and susceptibility to neurodegeneration. Little is known about the molecular mechanisms establishing this diversity during development. We show that the transcription factor BCL11A is expressed in a subset of mDA neurons in the developing and adult murine brain and in a subpopulation of pluripotent-stem-cell-derived human mDA neurons. By combining intersectional labeling and viral-mediated tracing, we demonstrate that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the murine dopaminergic system. In the substantia nigra, the Bcl11a-expressing mDA subset is particularly vulnerable to neurodegeneration upon α-synuclein overexpression or oxidative stress. Inactivation of Bcl11a in murine mDA neurons increases this susceptibility further, alters the distribution of mDA neurons, and results in deficits in skilled motor behavior. In summary, BCL11A defines mDA subpopulations with highly distinctive characteristics and is required for establishing and maintaining their normal physiology.
17
Citation17
1
Save
2

Regulation of hippocampal mossy fiber-CA3 synapse function by a Bcl11b/C1ql2/Nrxn3(25b+) pathway

Artemis Koumoundourou et al.May 25, 2023
+9
P
A
A
Abstract The transcription factor Bcl11b has been linked to neurodevelopmental and neuropsychiatric disorders associated with synaptic dysfunction. Bcl11b is highly expressed in dentate gyrus granule neurons and is required for the structural and functional integrity of mossy fiber-CA3 synapses. The underlying molecular mechanisms, however, remained unclear. We show that the synaptic organizer molecule C1ql2 is a direct functional target of Bcl11b that regulates synaptic vesicle recruitment and long-term potentiation at mossy fiber-CA3 synapses in vivo and in vitro . Furthermore, we demonstrate C1ql2 to exert its functions through direct interaction with a specific splice variant of neurexin-3, Nrxn3(25b+). Interruption of C1ql2-Nrxn3(25b+) interaction by expression of a non-binding C1ql2 mutant or by deletion of Nrxn3 in the dentate gyrus granule neurons recapitulates major parts of the Bcl11b as well as C1ql2 mutant phenotype, and interferes with C1ql2 targeting to the synapse. Together, this study identifies a novel C1ql2-Nrxn3(25b+)-dependent signaling pathway through which Bcl11b controls mossy fiber-CA3 synapse function. Thus, our findings contribute to the mechanistic understanding of neurodevelopmental disorders accompanied by synaptic dysfunction.
1

Developmental cell death of cortical projection neurons is controlled by a Bcl11a/Bcl6-dependent pathway

Christoph Wiegreffe et al.Oct 7, 2021
+4
P
T
C
Abstract Developmental neuron death plays a pivotal role in refining organization and wiring during neocortex formation. Aberrant regulation of this process results in neurodevelopmental disorders including impaired learning and memory. Underlying molecular pathways are incompletely determined. Loss of Bcl11a in cortical projection neurons induces pronounced cell death in upper-layer cortical projection neurons during postnatal corticogenesis. We used this genetic model to explore genetic mechanisms by which developmental neuron death is controlled. Unexpectedly, we found Bcl6, previously shown to be involved in transition of cortical neurons from progenitor to postmitotic differentiation state to provide a major check point regulating neuron survival during late cortical development. We show that Bcl11a is a direct transcriptional regulator of Bcl6 . Deletion of Bcl6 exerts death of cortical projection neurons. In turn, reintroduction of Bcl6 into Bcl11a mutants prevents induction of cell death in these neurons. Together, our data identify a novel Bcl11a/Bcl6-dependent molecular pathway in regulation of developmental cell death during corticogenesis.
0

The transcription factor BCL11A defines a distinctive subset of dopamine neurons in the developing and adult midbrain

Marianna Tolve et al.Oct 7, 2020
+13
K
A
M
Abstract Midbrain dopaminergic (mDA) neurons are diverse in their projection targets, impact on behavior and susceptibility to neurodegeneration. Little is known about the molecular mechanisms that establish this diversity in mDA neurons during development. We find that the transcription factor Bcl11a defines a subset of mDA neurons in the developing and adult murine brain. By combining intersectional labeling and viral-mediated tracing we show that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the dopaminergic system. We demonstrate that Bcl11a-expressing mDA neurons in the substantia nigra (SN) are particularly vulnerable to neurodegeneration in an α-synuclein overexpression model of Parkinson’s disease. Inactivation of Bcl11a in developing mDA neurons results in anatomical changes, deficits in motor learning and a dramatic increase in the susceptibility to α-synuclein-induced degeneration in SN-mDA neurons. In summary, we identify an mDA subpopulation with highly distinctive characteristics defined by the expression of the transcription factor Bcl11a already during development.