RD
Ritwik Datta
Author with expertise in Endoplasmic Reticulum Stress and Unfolded Protein Response
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
2
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

MFGE8 links absorption of dietary fatty acids with catabolism of enterocyte lipid stores through HNF4γ-dependent transcription of CES enzymes

Ritwik Datta et al.May 18, 2022
ABSTRACT Enterocytes modulate the extent of postprandial lipemia, a potent risk factor for developing atherosclerotic disease, by storing dietary fats in cytoplasmic lipid droplets (cLDs). We have previously demonstrated that the integrin ligand MFGE8 links absorption of dietary fats with activation of triglyceride (TG) hydrolases that catabolize cLDs for chylomicron production. The hydrolase(s) responsible for mobilization of TG from diet-derived cLDs is unknown though recent evidence indicates that this process is independent of the canonical pathway of TG hydrolysis mediated by ATGL. Here we identify CES1D as the key hydrolase downstream of the MFGE8-αvβ5 integrin pathway that regulates catabolism of diet-drive cLDs. Mfge8 KO enterocytes have reduced CES1D transcript and protein levels and reduced protein levels of the transcription factor HNF4γ. Mice KO for Ces1d or Hnf4γ have decreased enterocyte TG hydrolase activity coupled with retention of TG in cLDs. Mechanistically, MFGE8-dependent fatty acid uptake through CD36 leads to stabilization of HNF4γ protein levels; HNF4γ then increases Ces1d transcription. Our work identifies a regulatory network by which MFGE8 and αvβ5 regulate the severity of postprandial lipemia by linking dietary fat absorption with protein stabilization of a transcription factor that increases expression of enterocyte TG hydrolases that catabolize diet-derived cLDs.
1

Genome-wide screens identify SEL1L as an intracellular rheostat controlling collagen turnover

Michael Podolsky et al.Jan 14, 2023
Abstract Accumulating evidence has implicated impaired extracellular matrix (ECM) clearance as a key factor in fibrotic disease. Despite decades of research elucidating the effectors of ECM clearance, relatively little is understood regarding the upstream regulation of this process. Collagen is the most abundant constituent of normal and fibrotic ECM in mammalian tissues. Its catabolism occurs through extracellular proteolysis and cell-mediated uptake of collagen fragments for intracellular degradation. Given the paucity of information regarding the regulation of this latter process, we executed unbiased genome-wide screens to understand the molecular underpinnings of cell-mediated collagen clearance. Using this approach, we discovered a previously unappreciated mechanism through which collagen biosynthesis is sensed by cells internally and directly regulates clearance of extracellular collagen. The sensing mechanism is dependent on endoplasmic reticulum-resident protein SEL1L and occurs via a noncanonical function of SEL1L. This pathway functions as a homeostatic negative feedback loop that limits collagen accumulation in tissues. In human fibrotic lung disease, the induction of this collagen clearance pathway by collagen synthesis is impaired, thereby contributing to the pathological accumulation of collagen in lung tissue. Thus cell-autonomous, rheostatic collagen clearance is a previously unidentified pathway of tissue homeostasis.