WG
Weina Gao
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
336
h-index:
20
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring

Yu Shi et al.Apr 17, 2019
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy.
0
Citation335
0
Save
0

Multimodal single cell-resolved spatial proteomics reveal pancreatic tumor heterogeneity

Yanfen Xu et al.Nov 21, 2024
Despite the advances in antibody-guided cell typing and mass spectrometry-based proteomics, their integration is hindered by challenges for processing rare cells in the heterogeneous tissue context. Here, we introduce Spatial and Cell-type Proteomics (SCPro), which combines multiplexed imaging and flow cytometry with ion exchange-based protein aggregation capture technology to characterize spatial proteome heterogeneity with single-cell resolution. The SCPro is employed to explore the pancreatic tumor microenvironment and reveals the spatial alternations of over 5000 proteins by automatically dissecting up to 100 single cells guided by multi-color imaging of centimeter-scale formalin-fixed, paraffin-embedded tissue slide. To enhance cell-type resolution, we characterize the proteome of 14 different cell types by sorting up to 1000 cells from the same tumor, which allows us to deconvolute the spatial distribution of immune cell subtypes and leads to the discovery of subtypes of regulatory T cells. Together, the SCPro provides a multimodal spatial proteomics approach for profiling tissue proteome heterogeneity. The integration of antibody-guided cell typing and mass spectrometry-based proteomics remains challenging. Here, the authors develop Spatial and Cell-type Proteomics (SCPro), a multimodal spatial proteomics approach for profiling tissue proteome heterogeneity.
0
Citation1
0
Save
1

Chemical proteomic approach for in-depth glycosylation profiling of plasma carcinoembryonic antigen in cancer patients

Jin Chen et al.Sep 22, 2023
Abstract Carcinoembryonic antigen (CEA) of human plasma is a biomarker of many cancer diseases, and its N-glycosylation accounts for 60% of molecular mass. It is highly desirable to characterize its glycoforms for providing additional dimension of features to increase its performance in prognosis and diagnosis of cancers. However, to systematically characterize its site-specific glycosylation is challenging due to its low abundance. Here, we developed a highly sensitive strategy for in-depth glycosylation profiling of plasma CEA through chemical proteomics combined with multi-enzymatic digestion. A trifunctional probe was utilized to generate covalent bond of plasma CEA and its antibody upon UV irradiation. As low as 1 ng/mL CEA in plasma could be captured and digested with trypsin and chymotrypsin for intact glycopeptide characterization. Twenty six out of 28 potential N-glycosylation sites were well identified, which were the most comprehensive N-glycosylation site characterization of CEA on intact glycopeptide level as far as we known. Importantly, this strategy was applied to the glycosylation analysis of plasma CEA in cancer patients. Differential site-specific glycoforms of plasma CEA were observed in patients with colorectal carcinomas (CRC) and lung cancer. The distributions of site-specific glycoforms were different as the progression of CRC, and most site-specific glycoforms were overexpressed in stage II of CRC. Overall, we established a highly sensitive chemical proteomic method to profile site-specific glycosylation of plasma CEA, which should generally applicable to other well-established cancer glycoprotein biomarkers for improving their cancer diagnosis and monitoring performance. In Brief A chemical proteomic approach for glycosylation profiling of proteins was established for glycosylation characterization of plasma CEA with low abundance. Although CEA has been widely used in diagnosis and prognosis of many cancers, it lacks specificity and sensitivity. We found that the glycosylation of CEA on intact glycopeptide level provided additional dimension of molecular features to improve the performance of CEA in cancer diagnosis and progression. Highlights A chemical proteomic approach for glycosylation profiling of proteins with low abundance Glycosylation identification of plasma CEA on intact glycopeptide level with high sensitivity and reproducibility Glycosylation features of plasma CEA in cancer patients with CRC and lung cancer and in CRC patients at different progression stages Graphical Abstract
1

Deep spatial proteomic exploration of severe COVID-19-related pulmonary injury in post-mortem specimens

Yiheng Mao et al.Jul 17, 2023
ABSTRACT The lung, as a primary target of SARS-CoV-2, exhibits heterogeneous microenvironment accompanied by various histopathological changes following virus infection. However, comprehensive insight into the protein basis of COVID-19-related pulmonary injury with spatial resolution is currently deficient. Here, we generated a region-resolved quantitative proteomic atlas of seven major pathological structures within the lungs of COVID-19 victims by integrating histological examination, laser microdissection, and ultrasensitive proteomic technologies. Over 10,000 proteins were quantified across 71 dissected FFPE post-mortem specimens. By comparison with control samples, we identified a spectrum of COVID-19-induced protein and pathway dysregulations in alveolar epithelium, bronchial epithelium, and pulmonary blood vessels, providing evidence for the proliferation of transitional-state pneumocytes. Additionally, we profiled the region-specific proteomes of hallmark COVID-19 pulmonary injuries, including bronchiole mucus plug, pulmonary fibrosis, airspace inflammation, and hyperplastic alveolar type 2 cells. Bioinformatic analysis revealed the enrichment of cell-type and functional markers in these regions (e.g. enriched TGFBI in fibrotic region). Furthermore, we identified the up-regulation of proteins associated with viral entry, host restriction, and inflammatory response in COVID-19 lungs, such as FURIN and HGF. Collectively, this study provides spatial proteomic insights for understanding COVID-19-caused pulmonary injury, and may serve as a valuable reference for improving therapeutic intervention for severe pneumonia.