SR
Sruti Rayaprolu
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
350
h-index:
22
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease

Sruti Rayaprolu et al.Jun 21, 2013
Abstract Background A rare variant in the Triggering Receptor Expressed on Myeloid cells 2 ( TREM2 ) gene has been reported to be a genetic risk factor for Alzheimer’s disease by two independent groups (Odds ratio between 2.9-4.5). Given the key role of TREM2 in the effective phagocytosis of apoptotic neuronal cells by microglia, we hypothesized that dysfunction of TREM2 may play a more generalized role in neurodegeneration. With this in mind we set out to assess the genetic association of the Alzheimer’s disease-related risk variant in TREM2 (rs75932628, p.R47H) with other related neurodegenerative disorders. Results The study included 609 patients with frontotemporal dementia, 765 with amyotrophic lateral sclerosis, 1493 with Parkinson’s disease, 772 with progressive supranuclear palsy, 448 with ischemic stroke and 1957 controls subjects free of neurodegenerative disease. A significant association was observed for the TREM2 p.R47H substitution in susceptibility to frontotemporal dementia (OR = 5.06; p-value = 0.001) and Parkinson’s disease (OR = 2.67; p-value = 0.026), while no evidence of association with risk of amyotrophic lateral sclerosis, progressive supranuclear palsy or ischemic stroke was observed. Conclusions Our results suggest that the TREM2 p.R47H substitution is a risk factor for frontotemporal dementia and Parkinson’s disease in addition to Alzheimer’s disease. These findings suggest a more general role for TREM2 dysfunction in neurodegeneration, which could be related to its role in the immune response.
0
Citation345
0
Save
1

Cell type-specific biotin labeling in vivo resolves regional neuronal proteomic differences in mouse brain

Sruti Rayaprolu et al.Aug 4, 2021
ABSTRACT Isolation and proteomic profiling of brain cell types, particularly neurons, pose several technical challenges which limit our ability to resolve distinct cellular phenotypes in neurological diseases. Therefore, we generated a novel mouse line that enables cell type-specific expression of a biotin ligase, TurboID, via Cre-lox strategy for in vivo proximity-dependent biotinylation of proteins. Using adenoviral-based and transgenic approaches, we show striking protein biotinylation in neuronal cell bodies and axons throughout the mouse brain. We quantified more than 2,000 neuron-derived proteins following enrichment that mapped to numerous subcellular compartments. Synaptic, transmembrane transporters, ion channel subunits, and disease-relevant druggable targets were among the most significantly enriched proteins. Remarkably, we resolved brain region-specific proteomic profiles of Camk2a neurons with distinct functional molecular signatures and disease associations that may underlie regional neuronal vulnerability. Leveraging the neuronal specificity of this in vivo biotinylation strategy, we used an antibody-based approach to uncover regionally unique patterns of neuron-derived signaling phospho-proteins and cytokines, particularly in the cortex and cerebellum. Our work provides a proteomic framework to investigate cell type-specific mechanisms driving physiological and pathological states of the brain as well as complex tissues beyond the brain.
1
Citation2
0
Save
4

Identification of state-specific proteomic and transcriptomic signatures of microglia-derived extracellular vesicles

Juliet Santiago et al.Jul 29, 2023
Abstract Microglia are resident immune cells of the brain that play important roles in mediating inflammatory responses in several neurological diseases via direct and indirect mechanisms. One indirect mechanism may involve extracellular vesicle (EV) release, so that the molecular cargo transported by microglia-derived EVs can have functional effects by facilitating intercellular communication. The molecular composition of microglia-derived EVs, and how microglial activation states impacts EV composition and EV-mediated effects in neuroinflammation, remain poorly understood. We hypothesize that microglia-derived EVs have unique molecular profiles that are determined by microglial activation state. Using size-exclusion chromatography to purify EVs from BV2 microglia, combined with proteomic (label-free quantitative mass spectrometry or LFQ-MS) and transcriptomic (mRNA and non-coding RNA seq) methods, we obtained comprehensive molecular profiles of microglia-derived EVs. LFQ-MS identified several classic EV proteins (tetraspanins, ESCRT machinery, and heat shock proteins), in addition to over 200 proteins not previously reported in the literature. Unique mRNA and microRNA signatures of microglia-derived EVs were also identified. After treating BV2 microglia with lipopolysaccharide (LPS), interleukin-10, or transforming growth factor beta, to mimic pro-inflammatory, anti-inflammatory, or homeostatic states, respectively, LFQ-MS and RNA seq revealed novel state-specific proteomic and transcriptomic signatures of microglia-derived EVs. Particularly, LPS treatment had the most profound impact on proteomic and transcriptomic compositions of microglia-derived EVs. Furthermore, we found that EVs derived from LPS-activated microglia were able to induce pro-inflammatory transcriptomic changes in resting responder microglia, confirming the ability of microglia-derived EVs to relay functionally-relevant inflammatory signals. These comprehensive microglia-EV molecular datasets represent important resources for the neuroscience and glial communities, and provide novel insights into the role of microglia-derived EVs in neuroinflammation.
4
Citation2
14
Save
1

Convergent Cerebrospinal Fluid Proteomes and Metabolic Ontologies in Humans and Animal Models of Rett Syndrome

Stephanie Zlatic et al.Dec 1, 2021
Abstract MECP2 loss-of-function mutations cause Rett syndrome, a disorder that results from a disrupted brain transcriptome. How these transcriptional defects are decoded into a disease proteome remains unknown. We studied the proteome in Rett syndrome cerebrospinal fluid (CSF) across vertebrates. We identified a consensus proteome and ontological categories shared across Rett syndrome cerebrospinal fluid (CSF) from three species, including humans. Rett CSF proteomes enriched proteins annotated to HDL lipoproteins, complement, mitochondria, citrate/pyruvate metabolism, as well as synapse compartments. We used these prioritized and shared ontologies to select analytes for orthogonal quantification. These studies independently validated our proteome and ontologies. Ontologically selected CSF hits had genotypic discriminatory capacity as determined by Receiver Operating Characteristic (ROC) analysis and distinguished Rett from a related neurodevelopmental disorder, CDKL5 deficiency disorder. We propose that Mecp2 mutant CSF proteomes and ontologies inform novel putative mechanisms and biomarkers of disease. We suggest that Rett syndrome is a metabolic disorder impacting synapse function.
1
Citation1
0
Save
40

APOE Expression and Secretion are Modulated by Mitochondrial Dysfunction

Meghan Wynne et al.May 11, 2022
Abstract Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer’s disease risk factor apolipoprotein E (APOE) and other secretome components. This upregulation of secretory proteins was of a similar extent as modifications to the mitochondrial annotated proteome. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain, elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.
0

Quantitative multiplexed proteomics of mouse microglia by flow-cytometric sorting reveals a core set of highly-abundant microglial proteins

Sruti Rayaprolu et al.Oct 17, 2019
Background: Proteomic characterization of microglia has been limited by low yield and contamination by non-microglial proteins in magnetic-activated cell sorting (MACS) enrichment strategies. To determine whether a fluorescence-activated cell sorting (FACS)-based strategy overcomes these limitations, we compared microglial proteomes of MACS and FACS-isolated CD11b+ microglia in order to identify core sets of microglial proteins in adult mouse brain tissue. Results: Quantitative multiplexed proteomics by tandem mass tag mass spectrometry (TMT-MS) of MACS-enriched (N = 5) and FACS-isolated (N = 5) adult wild-type CD11b+ microglia identified 1,791 proteins, of which 953 were differentially abundant, indicating significant differences between both approaches. While the FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum and ribosomal proteins involved in protein metabolism and immune system functions, the MACS-enriched microglia proteome was enriched with proteins related to mitochondrial function and synaptic transmission. As compared to MACS, the FACS microglial proteome showed strong enrichment for canonical microglial proteins while neuron, astrocyte, and oligodendrocyte proteins were depleted. We identified a core set of proteins highly abundant in microglia including Msn and Cotl1 which were validated in immuno-histochemical studies. By comparing FACS-isolated microglia proteomes with transcriptomes, we observed highly concordant as well as highly discordant proteins that were abundant at the protein level but low at the transcript level. Conclusions: We demonstrate that TMT-MS proteomics of FACS isolated adult mouse microglia is superior to column-based enrichment approaches, resulting in purer and more highly-enriched microglial proteomes. We also define core sets of highly-abundant adult microglial proteins that can guide future studies. Key words: microglia, proteomics, mass spectrometry, FACS, MACS
10

Cellular proteomic profiling using proximity labelling by TurboID-NES in microglial and neuronal cell lines

Sydney Sunna et al.Sep 28, 2022
1.0 ABSTRACT Different brain cell types play distinct roles in brain development and disease. Molecular characterization of cell-specific mechanisms using cell type-specific approaches at the protein (proteomic) level, can provide biological and therapeutic insights. To overcome the barriers of conventional isolation-based methods for cell type-specific proteomics, in vivo proteomic labeling with proximity dependent biotinylation of cytosolic proteins using biotin ligase TurboID, coupled with mass spectrometry (MS) of labeled proteins, has emerged as a powerful strategy for cell type-specific proteomics in the native state of cells without need for cellular isolation. To complement in vivo proximity labeling approaches, in vitro studies are needed to ensure that cellular proteomes using the TurboID approach are representative of the whole cell proteome, and capture cellular responses to stimuli without disruption of cellular processes. To address this, we generated murine neuroblastoma (N2A) and microglial (BV2) lines stably expressing cytosolic TurboID to biotinylate the cellular proteome for downstream purification and analysis using MS. TurboID-mediated biotinylation captured 59% of BV2 and 65% of N2A proteomes under homeostatic conditions. TurboID expression and biotinylation minimally impacted homeostatic cellular proteomes of BV2 and N2A cells, and did not affect cytokine production or mitochondrial respiration in BV2 cells under resting or lipopolysaccharide (LPS)-stimulated conditions. These included endo-lysosome, translation, vesicle and signaling proteins in BV2 microglia, and synaptic, neuron projection and microtubule proteins in N2A neurons. The effect of LPS treatment on the microglial proteome was captured by MS analysis of biotinylated proteins (>500 differentially-abundant proteins) including increased canonical pro-inflammatory proteins (Il1a, Irg1, Oasl1) and decrease anti-inflammatory proteins (Arg1, Mgl2).