OM
Odette Mariani
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
6,688
h-index:
58
/
i10-index:
91
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The landscape of cancer genes and mutational processes in breast cancer

Philip Stephens et al.May 15, 2012
A study of breast cancers shows that the number of somatic mutations in each varies markedly and is strongly correlated with age at diagnosis and cancer histological grade. An analysis of mutated genes associated with breast cancer sampled from 100 patients reveals a wide variation in the number of mutations between individuals, highlighting the substantial genetic diversity underlying this disease. The mutation number correlates with age of diagnosis and histological grade. Multiple mutational signatures are identified, as are driver mutations in novel cancer genes. All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis1, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.
0
Citation1,619
0
Save
3

Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

Joshua Campbell et al.Apr 1, 2018
Highlights•SCCs show chromosome or methylation alterations affecting multiple related genes•These regulate squamous stemness, differentiation, growth, survival, and inflammation•Copy-quiet SCCs have hypermethylated (FANCF, TET1) or mutated (CASP8, MAPK-RAS) genes•Potential targets include ΔNp63, WEE1, IAPs, PI3K-mTOR/MAPK, and immune responsesSummaryThis integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches.Graphical abstract
3
Citation290
0
Save
1

Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction

Jorge Barbazán et al.Apr 5, 2021
Abstract During tumor progression, cancer-associated fibroblasts (CAFs) accumulate in tumors and produce excessive extracellular matrix (ECM), forming a capsule that enwraps cancer cells. This capsule is a barrier that restricts tumor growth leading to the buildup of intratumoral pressure. Combining genetic and physical manipulations in vivo with microfabrication and force measurements in vitro , we found that the CAFs capsule is not a passive barrier but instead actively compresses cancer cells using actomyosin contractility. Cancer cells mechanosense CAF compression, resulting in an altered localization of the transcriptional regulator YAP. Abrogation of CAFs contractility in vivo leads to the dissipation of compressive forces and impairment of capsule formation. By mapping CAF force patterns in 3D, we show that compression is a CAF-intrinsic property independent of cancer cell growth. Supracellular coordination of CAFs is achieved through fibronectin cables that serve as scaffolds allowing force transmission. Our study unveils that the contractile capsule actively compresses cancer cells, modulates their mechanical signaling, and reorganizes tumor morphology.
1
Citation16
0
Save
Load More