Abstract Sleep pressure builds during wakefulness, but the mechanisms underlying this homeostatic process are poorly understood. One zebrafish model suggests that sleep pressure increases as a function of global neuronal activity, such as during sleep deprivation or acute exposure to drugs that induce widespread brain activation. Given that the arousal-promoting noradrenergic system is important for maintaining heightened neuronal activity during wakefulness, we hypothesised that genetic and pharmacological reduction of noradrenergic tone during drug-induced neuronal activation would dampen subsequent rebound sleep in zebrafish larvae. Unexpectedly, dampening noradrenergic tone with the α 2 -adrenoceptor agonist clonidine during acute caffeine or pentylenetetrazol treatment enhanced subsequent rebound sleep, while stimulating noradrenergic signalling during caffeine exposure with a cocktail of α 1 - and β-adrenoceptor agonists did not enhance sleep. Similarly, CRISPR/Cas9-mediated elimination of the dopamine β-hydroxylase ( dbh ) gene, which encodes an enzyme required for noradrenalin synthesis, enhanced baseline sleep in larvae but did not prevent additional rebound sleep following acute induction of neuronal activity. Across all drug conditions, c-fos expression immediately after drug exposure varied inversely with noradrenergic tone and correlated strongly with the amount of induced rebound sleep. These results are consistent with a model in which increases in neuronal activity, as reflected by brain-wide levels of c-fos induction, drive a sleep pressure signal that promotes rebound sleep independently of noradrenergic tone.