Radim Čegan
Author with expertise in Sex Determination and Differentiation in Organisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
1,454
h-index:
17
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-frequency, precise modification of the tomato genome

Tomáš Čermák et al.Oct 20, 2015
+2
R
N
T
The use of homologous recombination to precisely modify plant genomes has been challenging, due to the lack of efficient methods for delivering DNA repair templates to plant cells. Even with the advent of sequence-specific nucleases, which stimulate homologous recombination at predefined genomic sites by creating targeted DNA double-strand breaks, there are only a handful of studies that report precise editing of endogenous genes in crop plants. More efficient methods are needed to modify plant genomes through homologous recombination, ideally without randomly integrating foreign DNA. Here, we use geminivirus replicons to create heritable modifications to the tomato genome at frequencies tenfold higher than traditional methods of DNA delivery (i.e., Agrobacterium). A strong promoter was inserted upstream of a gene controlling anthocyanin biosynthesis, resulting in overexpression and ectopic accumulation of pigments in tomato tissues. More than two-thirds of the insertions were precise, and had no unanticipated sequence modifications. Both TALENs and CRISPR/Cas9 achieved gene targeting at similar efficiencies. Further, the targeted modification was transmitted to progeny in a Mendelian fashion. Even though donor molecules were replicated in the vectors, no evidence was found of persistent extra-chromosomal replicons or off-target integration of T-DNA or replicon sequences. High-frequency, precise modification of the tomato genome was achieved using geminivirus replicons, suggesting that these vectors can overcome the efficiency barrier that has made gene targeting in plants challenging. This work provides a foundation for efficient genome editing of crop genomes without the random integration of foreign DNA.
0
Citation568
0
Save
0

A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants

Tomáš Čermák et al.May 18, 2017
+8
J
S
T
We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A Web-based tool streamlines vector selection and construction. One advantage of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 (Csy4) and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing 12 gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).
0
Citation511
0
Save
0

Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system

Nicholas Baltes et al.Sep 28, 2015
+4
E
A
N
To reduce crop losses due to geminivirus infection, we targeted the bean yellow dwarf virus (BeYDV) genome for destruction with the CRISPR–Cas (clustered, regularly interspaced short palindromic repeats–CRISPR-associated proteins) system. Transient assays using BeYDV-based replicons revealed that CRISPR–Cas reagents introduced mutations within the viral genome and reduced virus copy number. Transgenic plants expressing CRISPR–Cas reagents and challenged with BeYDV had reduced virus load and symptoms, thereby demonstrating a novel strategy for engineering resistance to geminiviruses. Transient assays and transgenic experiments demonstrate that sgRNA/Cas9 constructs targeting the bean yellow dwarf virus inhibit the accumulation of the virus and confer resistance in transgenic N. benthamiana plants.
0
Citation374
0
Save
5

Identification of developmentally important genes inSilene latifoliathrough chemical genetics and transcriptome profiling

Václav Bačovský et al.Jan 26, 2021
+6
E
R
V
Abstract Dioecious plants possess diverse sex determination systems and unique mechanisms of reproductive organ development; however, little is known about how sex-linked genes shape the expression of regulatory cascades that lead to developmental differences between sexes. In Silene latifolia , a dioecious plant with stable dimorphism in floral traits, early experiments suggested that female-regulator genes act on the factors that determine the boundaries of the flower whorls. To identify these regulators, we sequenced the transcriptome of male flowers with fully developed gynoecia induced by rapid demethylation in the parental generation. As the hermaphrodite flower trait is holandric (transmitted only from male to male, inherited on the Y chromosome), we screened for genes that are differentially expressed between male, female, and hermaphrodite flowers. Dozens of candidate genes that are upregulated in hermaphrodite flowers compared to male and female flowers were detected and found to have putative roles in floral organization, affecting the expression of floral MADS-box and other genes. Amongst these genes, eight candidates were found to promote gynoecium formation in female and hermaphrodite flowers, affecting organ size, whorl boundary, and the expression of mainly B class flower genes. To complement our transcriptome analysis, we closely examined the floral organs in their native state using a field emission environmental scanning electron microscope. Our results reveal the principal regulatory pathways involved in sex-specific flower development in the classical model of dioecy, S. latifolia .
5
Citation1
0
Save
1

The Silene latifolia genome and its giant Y chromosome

Carol Moraga et al.Sep 22, 2023
+51
K
X
C
Abstract In some species, the Y is a tiny chromosome but the dioecious plant Silene latifolia has a giant ∼550 Mb Y chromosome, which has remained unsequenced so far. Here we used a hybrid approach to obtain a high-quality male S. latifolia genome. Using mutants for sexual phenotype, we identified candidate sex-determining genes on the Y. Comparative analysis of the sex chromosomes with outgroups showed the Y is surprisingly rearranged and degenerated for a ∼11 MY-old system. Recombination suppression between X and Y extended in a stepwise process, and triggered a massive accumulation of repeats on the Y, as well as in the non-recombining pericentromeric region of the X, leading to giant sex chromosomes. One-Sentence Summary This work uncovers the structure, function, and evolution of one of the largest giant Y chromosomes, that of the model plant Silene latifolia , which is almost 10 times larger than the human Y, despite similar genome sizes.
0

IDENTIFICATION OF POLYCOMB REPRESSIVE COMPLEX 1 AND 2 CORE COMPONENTS IN HEXAPLOID BREAD WHEAT

Beáta Strejčková et al.Jul 16, 2019
+2
A
R
B
Polycomb repressive complex 1 and 2 play important roles in epigenetic gene regulation by posttranslationally modifying specific histone residues. Polycomb repressive complex 2 is responsible for the trimethylation of lysine 27 on histone H3, while Polycomb repressive complex 1 catalyzes the monoubiquitination of histone H2A at lysine 119. Although these biochemical functions are evolutionarily conserved, studies in animals and plants, mainly Arabidopsis thaliana, showed that specific subunits have evolved into small gene families, with individual members acting at different developmental stages or responding to specific environmental stimuli. However, the evolution of polycomb group gene families in monocots, particularly those with complex allopolyploid origins, is unknown. Here, we present the in silico identification of the Polycomb repressive complex 1 and 2 subunits in allohexaploid bread wheat, the reconstruction of their evolutionary history and a transcriptional analysis over a series of 33 developmental stages. The identification and chromosomal location of the Polycomb repressive complex 1 and 2 core components in bread wheat may enable a deeper understanding of developmental processes, including vernalization in commonly grown winter wheat.
0

Evolution of sex determination and heterogamety changes in section Otites of the genus Silene

Veronika Balounova et al.May 17, 2018
+10
R
R
V
Switches in heterogamety occasionally occur both in animals and plants, although plant sex determination systems are mostly more recently evolved than those of animals, and have had less time for switches to occur. However, our previous research revealed a switch in heterogamety in section Otites of the plant genus Silene. Here we analyse in detail the evolution of genetic sex determination in section Otites, which is estimated to have evolved about 0.55 MYA. Our study confirms female heterogamety in S. otites and newly reveals female heterogamety in S. borysthenica. Sequence analyses and genetic mapping show that the sex-linked regions of these two species are the same, but the region in S. colpophylla, a close relative with male heterogamety, is different. The sex chromosome pairs of S. colpophylla and S. otites each correspond to an autosome of the other species, and both differ from the XY pair in S. latifolia, in a different section of the genus. Our phylogenetic analysis suggests a possible change from female to male heterogamety within Silene section Otites, making these species suitable for detailed studies of the events involved.
0

Genomic imprinting mediates dosage compensation in a young plant XY system

Aline Muyle et al.Aug 21, 2017
+8
C
N
A
This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100044). Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced Y gene expression and eventual Y gene loss. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals. However, the early steps in the evolution of dosage compensation remain unknown and dosage compensation is poorly understood in plants. Here we show a novel dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno for the evolution of X inactivation in mammals.
1

Cytokinins control secondary cell wall formation in the inflorescence stem of Arabidopsis

Vojtěch Didi et al.Jul 28, 2023
+16
A
D
V
Abstract Spatiotemporal control over developmental programs is vital to all organisms. Here we show that cytokinin (signaling) deficiency leads to early secondary cell wall (SCW) formation in Arabidopsis inflorescence stem that associates with precocious upregulation of a SCW transcriptional cascade controlled by NAC TFs (NSTs). We demonstrate that cytokinin signaling through the AHK2/3 and the ARR1/10/12 suppresses the expression of several NSTs and SCW formation in the apical portions of stems. Exogenous cytokinin application reconstituted both proper development and apical-basal gradient of NST1 and NST3 in a cytokinin biosynthesis-deficient mutant. We show that AHK2 and AHK3 required functional NST1 or NST3 to control SCW initiation in the interfascicular fibers, further evidencing that cytokinins act upstream of NST s transcription factors. The premature onset of a rigid SCW biosynthesis and altered expression of NST1/3 and VND6/7 due to cytokinin deficiency led to the formation of smaller tracheary elements (TEs) and impaired hydraulic conductivity. We conclude that cytokinins downregulate NSTs to inhibit premature SCW formation in the apical part of the inflorescence stem, facilitating thus the development of fully functional TEs and interfascicular fibers. Summary statement Cytokinins attenuate premature secondary cell wall (SCW) formation via downregulating the expression of NAC TFs, the master switches of SCW transcriptional cascade, thus affecting the tracheary elements size and conductivity.