QN
Quynh Nguyen
Author with expertise in Olfactory Dysfunction in Health and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
0
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Hypothalamic representation of the imminence of predator threat detected by the vomeronasal organ in mice

Quynh Nguyen et al.Sep 29, 2023
+4
Y
A
Q
Abstract Animals have the innate ability to select optimal defensive behavioral outputs with an appropriate intensity in response to predator threat in specific contexts. Such innate behavioral decisions are thought to be computed in the medial hypothalamic nuclei that contain neural populations directly controlling defensive behavioral outputs. The vomeronasal organ (VNO) is one of the major sensory input channels through which predator cues are detected with ascending inputs to the medial hypothalamic nuclei, especially to the ventromedial hypothalamus (VMH). Here, we show that cat saliva contains predator cues that signal imminence of predator threat and regulate the robustness of freezing behavior through the VNO in mice. Cat saliva activates neurons expressing the V2R-A4 subfamily of sensory receptors, suggesting the existence of specific receptor groups responsible for freezing behavior induced by the predator cues. The number of VNO neurons activated in response to saliva correlates with the freshness of saliva and the intensity of freezing behavior, while the downstream neurons in the accessory olfactory bulb (AOB) and VMH are quantitatively equally activated by fresh and old saliva. Strikingly, however, only the number of VMH neurons activated by fresh saliva positively correlates with intensity of freezing behavior. Detailed analysis of the spatial distribution of fresh and old saliva-responding neurons revealed a neuronal population within the VMH that is more sensitive to fresh saliva than old saliva. Taken together, this study demonstrates that predator cues in cat saliva change over time and differentially activate the sensory-to-hypothalamus pathway. More specifically, the imminent predator signal predominantly activates V2R-A4 receptors, which results in the activation of freezing-correlated neurons in the VMH. In contrast, the less imminent predator signal activates V2R-A4 receptors to a lesser extent, which in turn results in the activation of distinct populations of neurons in the VMH that are not correlated to freezing.
9

Bidirectional pharmacological perturbations of the noradrenergic system differentially affect tactile detection

Jim McBurney-Lin et al.Apr 24, 2020
+4
L
Y
J
Abstract The brain neuromodulatory systems heavily influence behavioral and cognitive processes. Previous work has shown that norepinephrine (NE), a classic neuromodulator mainly derived from the locus coeruleus (LC), enhances neuronal responses to sensory stimuli. However, the role of the LC-NE system in modulating perceptual task performance is not well understood. In addition, systemic perturbation of NE signaling has often been proposed to specifically target the LC in functional studies, yet the assumption that localized (specific) and systemic (nonspecific) perturbations of LC-NE have the same behavioral impact remains largely untested. In this study, we trained mice to perform a head-fixed, quantitative tactile detection task, and administered an α2 adrenergic receptor agonist or antagonist to pharmacologically down- or up-regulate LC-NE activity, respectively. We addressed the outstanding question of how bidirectional perturbations of LC-NE activity affect tactile detection, and tested whether localized and systemic drug treatments exert the same behavioral effects. We found that both localized and systemic suppression of LC-NE impaired tactile detection by reducing motivation. Surprisingly, while locally activating LC-NE enabled mice to perform in a near-optimal regime, systemic activation impaired behavior by promoting impulsivity. Our results demonstrate that localized silencing and activation of LC-NE differentially affect tactile detection, and that localized and systemic NE activation induce distinct behavioral changes.
0

Coadaptation of the chemosensory system with voluntary exercise behavior in mice

Quynh Nguyen et al.May 26, 2020
+5
T
D
Q
Abstract Ethologically relevant chemical senses and behavioral habits are likely to coadapt in response to selection. As olfaction is involved in intrinsically motivated behaviors in mice, we hypothesized that selective breeding for a voluntary behavior would enable us to identify novel roles of the chemosensory system. Voluntary wheel running (VWR) is an intrinsically motivated and naturally rewarding behavior, and even wild mice run on a wheel placed in nature. We have established 4 independent, artificially evolved mouse lines by selectively breeding individuals showing high VWR activity (High Runners; HRs), together with 4 non-selected Control lines, over 88 generations. We found that several sensory receptors in specific receptor clusters were differentially expressed between the vomeronasal organ (VNO) of HRs and Controls. Moreover, one of those clusters contains multiple single-nucleotide polymorphism loci for which the allele frequencies were significantly divergent between the HR and Control lines, i.e., loci that were affected by the selective breeding protocol. These results indicate that the VNO has become genetically differentiated between HR and Control lines during the selective breeding process, strongly suggesting the chemosensory receptors as quantitative trait loci (QTL) for voluntary exercise in mice. We propose that olfaction may play an important role in motivation for voluntary exercise in mammals.