SN
Shigenori Nonaka
Author with expertise in Regulation and Function of Microtubules in Cell Division
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(85% Open Access)
Cited by:
3,983
h-index:
26
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Visualizing ATP Dynamics in Live Mice

Norimichi Koitabashi et al.Jun 10, 2020
ABSTRACT Analysis of the dynamics of adenosine triphosphate (ATP) is vital to quantitatively define the actual roles of ATP in biological activities. Here, we applied a genetically encoded Förster resonance energy transfer biosensor “GO-ATeam” and created a transgenic mouse model that allows systemic ATP levels to be quantitatively, sensitively, noninvasively, and spatiotemporally measured under physiological and pathological conditions. We used this model to readily conduct intravital imaging of ATP dynamics under three different conditions: during exercise, in all organs and cells; during myocardial infarction progression; and in response to the application of cardiotoxic drugs. These findings provide compelling evidence that the GO-ATeam mouse model is a powerful tool to investigate the multifarious functions of cellular ATP in vivo with unprecedented spatiotemporal resolution in real-time. This will inform predictions of molecular and morphological responses to perturbations of ATP levels, as well as the elucidation of physiological mechanisms that control ATP homeostasis. One Sentence Summary Intravital real-time imaging of ATP dynamics in multiple organs using GO-ATeam mice, can be used to quantitatively, sensitively, noninvasively, and spatiotemporally measure systemic ATP levels and provide a platform for preclinical pharmacological studies.
1
Citation6
0
Save
0

Discovery of essential kinetoplastid-insect adhesion proteins and their function in Leishmania-sand fly interactions

Ryuji Yanase et al.Aug 13, 2024
Abstract Leishmania species, members of the kinetoplastid parasites, cause leishmaniasis, a neglected tropical disease, in millions of people worldwide. Leishmania has a complex life cycle with multiple developmental forms, as it cycles between a sand fly vector and a mammalian host; understanding their life cycle is critical to understanding disease spread. One of the key life cycle stages is the haptomonad form, which attaches to insect tissues through its flagellum. This adhesion, conserved across kinetoplastid parasites, is implicated in having an important function within their life cycles and hence in disease transmission. Here, we discover the kinetoplastid-insect adhesion proteins (KIAPs), which localise in the attached Leishmania flagellum. Deletion of these KIAPs impairs cell adhesion in vitro and prevents Leishmania from colonising the stomodeal valve in the sand fly, without affecting cell growth. Additionally, loss of parasite adhesion in the sand fly results in reduced physiological changes to the fly, with no observable damage of the stomodeal valve and reduced midgut swelling. These results provide important insights into a comprehensive understanding of the Leishmania life cycle, which will be critical for developing transmission-blocking strategies.
0
Citation1
0
Save
12

Formation and three-dimensional architecture ofLeishmaniaadhesion in the sand fly vector

Ryuji Yanase et al.Oct 30, 2022
Abstract Attachment to a substrate to maintain position in a specific ecological niche is a common strategy across biology, especially for eukaryotic parasites. During development in the sand fly vector, the eukaryotic parasite Leishmania adheres to the stomodeal valve, as the specialised haptomonad form. Dissection of haptomonad adhesion is a critical step for understanding parasite transmission. Nevertheless, haptomonad studies are limited, as this is a technically challenging life cycle form to investigate. Here, we have combined three-dimensional electron microscopy approaches, including serial block face scanning electron microscopy (SBFSEM) and serial tomography to dissect the organisation and architecture of haptomonads in the sand fly. We showed that the attachment plaque contains distinct structural elements. Using time-lapse light microscopy, we identified five stages of haptomonad differentiation, and showed that calcium is necessary for haptomonad adhesion to the surface. This study provides the structural and regulatory foundations of the haptomonad form, which are critical for a holistic understanding of Leishmania transmission.
Load More