MM
Michael Mak
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
9
(44% Open Access)
Cited by:
3
h-index:
21
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Proteolysis and Contractility Regulate Tissue Opening and Wound Healing by Lung Fibroblasts in 3D Microenvironments

Hugh Xiao et al.Jul 5, 2024
Abstract Damage and repair are recurring processes in tissues, with fibroblasts playing key roles by remodeling extracellular matrices (ECM) through protein synthesis, proteolysis, and cell contractility. Dysregulation of fibroblasts can lead to fibrosis and tissue damage, as seen in idiopathic pulmonary fibrosis (IPF). In advanced IPF, tissue damage manifests as honeycombing, or voids in the lungs. This study explores how transforming growth factor‐beta (TGF‐β), a crucial factor in IPF, induces lung fibroblast spheroids to create voids in reconstituted collagen through proteolysis and cell contractility, a process we termed as hole formation. These voids reduce when proteases are blocked. Spheroids mimic fibroblast foci observed in IPF. Results indicate that cell contractility mediates tissue opening by stretching fractures in the collagen meshwork. Matrix metalloproteinases (MMPs), including MMP1 and MT1‐MMP, are essential for hole formation, with invadopodia playing a significant role. Blocking MMPs reduces hole size and promotes wound healing. This study shows how TGF‐β induces excessive tissue destruction and how blocking proteolysis can reverse damage, offering insights into IPF pathology and potential therapeutic interventions.
0
Citation1
0
Save
1

Fiber alignment in 3D collagen networks as a biophysical marker for cell contractility

David Böhringer et al.Jun 29, 2023
Cells cultured in 3D fibrous biopolymer matrices exert traction forces on their environment that induce deformations and remodeling of the fiber network. By measuring these deformations, the traction forces can be reconstructed if the mechanical properties of the matrix and the force-free matrix configuration are known. These requirements severely limit the applicability of traction force reconstruction in practice. In this study, we test whether force-induced matrix remodeling can instead be used as a proxy for cellular traction forces. We measure the traction forces of hepatic stellate cells and different glioblastoma cell lines and quantify matrix remodeling by measuring the fiber orientation and fiber density around these cells. In agreement with simulated fiber networks, we demonstrate that changes in local fiber orientation and density are directly related to cell forces. By resolving Rho-kinase (ROCK) Inhibitor-induced changes of traction forces and fiber alignment and density in hepatic stellate cells, we show that the method is suitable for drug screening assays. We conclude that differences in local fiber orientation and density, which are easily measurable, can be used as a qualitative proxy for changes in traction forces. The method is available as an open-source Python package with a graphical user interface.
0

Non-Elastic Remodeling of the 3D Extracellular Matrix by Cell-Generated Forces

Andrea Malandrino et al.Sep 27, 2017
The mechanical properties of the extracellular matrix (ECM) -- a complex, 3D, fibrillar scaffold of cells in physiological environments -- modulate cell behavior and can drive tissue morphogenesis, regeneration, and disease progression. For simplicity, it is often convenient to assume these properties to be time-invariant. In living systems, however, cells dynamically remodel the ECM and create time-dependent local environments. Here, we demonstrate that cell generated contractile forces are capable of producing substantial irreversible changes to the density and architecture of physiologically relevant ECMs -- collagen I and fibrin -- in a matter of minutes. We measure the 3D mechanical deformation profiles of the ECM surrounding cancer and endothelial cells during stages when force generation is active or inactive. We further correlate these measurements to both discrete fiber simulations that incorporate fiber crosslink unbinding kinetics and continuum-scale modeling. Our findings reveal that plasticity, as a mechanical law in these networks, is fundamentally related to the force-driven unbinding of fiber crosslinks. These results illustrate the dynamic nature of the mechanical environment of physiologically mimicking cell-in-gel systems.
1

Adaptation to volumetric compression drives hepatoblastoma cells to an apoptosis-resistant and invasive phenotype

Xiangyu Gong et al.Oct 10, 2023
Abstract Liver cancer involves tumor cells rapidly growing within a packed tissue environment. Patient tumor tissues reveal densely packed and deformed cells, especially at tumor boundaries, indicative of physical crowding and compression. It is not well understood how these physical signals modulate tumor evolution and therapeutic susceptibility. Here we investigate the impact of volumetric compression on liver cancer (HepG2) behavior. We find that conditioning cells under a highly compressed state leads to major transcriptional reprogramming, notably the loss of hepatic markers, the epithelial-to-mesenchymal transition (EMT)-like changes, and altered calcium signaling-related gene expression, over the course of several days. Biophysically, compressed cells exhibit increased Rac1-mediated cell spreading and cell-extracellular matrix interactions, cytoskeletal reorganization, increased YAP and β-catenin nuclear translocation, and dysfunction in cytoplasmic and mitochondrial calcium signaling. Furthermore, compressed cells are resistant to chemotherapeutics and desensitized to apoptosis signaling. Apoptosis sensitivity can be rescued by stimulated calcium signaling. Our study demonstrates that volumetric compression is a key microenvironmental factor that drives tumor evolution in multiple pathological directions and highlights potential countermeasures to re-sensitize therapy-resistant cells. Significance statement Compression can arise as cancer cells grow and navigate within the dense solid tumor microenvironment. It is unclear how compression mediates critical programs that drive tumor progression and therapeutic complications. Here, we take an integrative approach in investigating the impact of compression on liver cancer. We identify and characterize compressed subdomains within patient tumor tissues. Furthermore, using in vitro systems, we induce volumetric compression (primarily via osmotic pressure but also via mechanical force) on liver cancer cells and demonstrate significant molecular and biophysical changes in cell states, including in function, cytoskeletal signaling, proliferation, invasion, and chemoresistance. Importantly, our results show that compressed cells have impaired calcium signaling and acquire resistance to apoptosis, which can be countered via calcium mobilization.
2

Volumetric Compression Shifts Rho GTPase Balance and Induces Mechanobiological Cell State Transition

Xiangyu Gong et al.Oct 10, 2023
Abstract During development and disease progression, cells are subject to osmotic and mechanical stresses that modulate cell volume, which fundamentally influences cell homeostasis and has been linked to a variety of cellular functions. It is not well understood how the mechanobiological state of cells is programmed by the interplay of intracellular organization and complex extracellular mechanics when stimulated by cell volume modulation. Here, by controlling cell volume via osmotic pressure, we evaluate physical phenotypes (including cell shape, morphodynamics, traction force, and extracellular matrix (ECM) remodeling) and molecular signaling (YAP), and we uncover fundamental transitions in active biophysical states. We demonstrate that volumetric compression shifts the ratiometric balance of Rho GTPase activities, thereby altering mechanosensing and cytoskeletal organization in a reversible manner. Specifically, volumetric compression controls cell spreading, adhesion formation, and YAP nuclear translocation, while maintaining cell contractile activity. Furthermore, we show that on physiologically relevant fibrillar collagen I matrices, which are highly non-elastic, cells exhibit additional modes of cell volume-dependent mechanosensing that are not observable on elastic substrates. Notably, volumetric compression regulates the dynamics of cell-ECM interactions and irreversible ECM remodeling via Rac-directed protrusion dynamics, at both the single-cell level and the multicellular level. Our findings support that cell volume is a master biophysical regulator and reveal its roles in cell mechanical state transition, cell-ECM interactions, and biophysical tissue programming.