CL
Christopher Lee
Author with expertise in Neural Mechanisms of Memory Formation and Spatial Navigation
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
4
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
51

Amygdalostriatal transition zone neurons encode sustained valence to direct conditioned behaviors

Fergil Mills et al.Oct 29, 2022
+18
C
S
F
SUMMARY In order to respond appropriately to threats in the environment, the brain must rapidly determine whether a stimulus is important and whether it is positive or negative, and then use that information to direct behavioral responses. Neurons in the amygdala have long been implicated in valence encoding and in fear responses to threatening stimuli, but show transient firing responses in response to these stimuli that do not match the timescales of associated behavioral responses. For decades, there has been a logical gap in how behavioral responses could be mediated without an ensemble representation of the internal state of valence that has rapid onset, high signal-to-noise, and is sustained for the duration of the behavioral state. Here, we present the amygdalostriatal transition zone (ASt) as a missing piece of this highly conserved process that is of paramount importance for survival, which does exactly this: represents an internal state (e.g. fear) that can be expressed in multiple motor outputs (e.g. freezing or escape). The ASt is anatomically positioned as a “shortcut” to connect the corticolimbic system (important for evaluation) with the basal ganglia (important for action selection) with the inputs of the amygdala and the outputs of the striatum – ideally poised for evaluating and responding to environmental threats. From in vivo cellular resolution recordings that include both electrophysiology and calcium imaging, we find that ASt neurons are unique in that they are sparse coding, extremely high signal-to-noise, and also maintain a sustained response for negative valence stimuli for the duration of the defensive behavior – a rare but essential combination. We further show that photostimulation of the ASt is sufficient to drive freezing and avoidance behaviors. Using single-nucleus RNA sequencing and in situ RNA labelling we generate a comprehensive profile of cell types and gene expression in the ASt, and find the ASt is genetically distinct from adjacent striatal and amygdalar structures. We also find that the ASt has a greater proportion of neurons expressing Drd2 than neurons expressing Drd1a , a unique feature compared to other regions of the striatum. Using in vivo calcium imaging, we show that that this Drd2+ population robustly encodes stimuli of negative valence, and in loss-of-function experiments find that optogenetic inhibition of Drd2+ ASt neurons causes a striking reduction in cue-conditioned fear responses. Together, our findings identify the ASt as a previously-unappreciated critical missing link for encoding learned associations and directing ongoing behavior.
0

Social isolation recruits amygdala-cortical circuitry to escalate alcohol drinking

Reesha Patel et al.Jan 1, 2023
+17
K
M
R
How do social factors impact the brain and contribute to increased alcohol drinking? We found that social rank predicts alcohol drinking, where subordinates drink more than dominants. Furthermore, social isolation escalates alcohol drinking, particularly impacting subordinates who display a greater increase in alcohol drinking compared to dominants. Using cellular resolution calcium imaging, we show that the basolateral amygdala-medial prefrontal cortex (BLA-mPFC) circuit predicts alcohol drinking in a rank-dependent manner, unlike non-specific BLA activity. The BLA-mPFC circuit becomes hyperexcitable during social isolation, detecting social isolation states. Mimicking the observed increases in BLA-mPFC activity using optogenetics was sufficient to increase alcohol drinking, suggesting the BLA-mPFC circuit may be a neural substrate for the negative impact of social isolation. To test the hypothesis that the BLA-mPFC circuit conveys a signal induced by social isolation to motivate alcohol consumption, we first determined if this circuit detects social information. Leveraging optogenetics in combination with calcium imaging and SLEAP automated pose tracking, we found that BLA-mPFC circuitry governs social behavior and neural representation of social contact. We further show that BLA-mPFC stimulation mimics social isolation-induced mPFC encoding of sucrose and alcohol, and inhibition of the BLA-mPFC circuit decreases alcohol drinking following social isolation. Collectively, these data suggest the amygdala-cortical circuit mirrors a neural encoding state similar to social isolation and underlies social isolation-associated alcohol drinking.
0

Breakdown of spatial coding and neural synchronization in epilepsy

Tristan Shuman et al.Jun 29, 2018
+14
D
D
T
Temporal lobe epilepsy causes significant cognitive deficits in both human patients and rodent models, yet the specific circuit mechanisms that alter cognitive processes remain unknown. There is dramatic and selective interneuron death and axonal reorganization within the hippocampus of both humans and animal models, but the functional consequences of these changes on information processing at the neuronal population level have not been well characterized. To examine spatial representations of epileptic and control mice, we developed a novel wire-free miniature microscope to allow for unconstrained behavior during in vivo calcium imaging of neuronal activity. We found that epileptic mice running on a linear track had severely impaired spatial processing in CA1 within a single session, as place cells were less precise and less stable, and population coding was impaired. Long-term stability of place cells was also compromised as place cells in epileptic mice were highly unstable across short time intervals and completely remapped across a week. Because of the large-scale reorganization of inhibitory circuits in epilepsy, we hypothesized that degraded spatial representations were caused by dysfunctional inhibition. To test this hypothesis, we examined the temporal dynamics of hippocampal interneurons using silicon probes to simultaneously record from CA1 and dentate gyrus during head-fixed virtual navigation. We found that epileptic mice had a profound reduction in theta coherence between the dentate gyrus and CA1 regions and altered interneuron synchronization. In particular, dentate interneurons of epileptic mice had altered phase preferences to ongoing theta oscillations, which decorrelated inhibitory population firing between CA1 and dentate gyrus. To assess the specific contribution of desynchronization on spatial coding, we built a CA1 network model to simulate hippocampal desynchronization. Critically, we found that desynchronized inputs reduced the information content and stability of CA1 neurons, consistent with the experimental data. Together, these results demonstrate that temporally precise intra-hippocampal communication is critical for forming the spatial code and that desynchronized firing of hippocampal neuronal populations contributes to poor spatial processing in epileptic mice.