MM
Marta Murillo
Author with expertise in Pathophysiology of Parkinson's Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
0
h-index:
2
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A designed ankyrin-repeat protein that targets Parkinson’s disease-associated LRRK2

Verena Dederer et al.Jul 1, 2024
Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.
0

Cryo-electron tomography reveals the microtubule-bound form of inactive LRRK2

Siyu Chen et al.Jun 20, 2024
Parkinson’s Disease (PD) is the second most common neurodegenerative disorder. Mutations in leucine-rich repeat kinase 2 (LRRK2), a multi-domain protein containing both a kinase and a GTPase, are a leading cause of the familial form of PD. Pathogenic LRRK2 mutations increase LRRK2 kinase activity. While the bulk of LRRK2 is found in the cytosol, the protein associates with membranes where its Rab GTPase substrates are found, and under certain conditions, with microtubules. Integrative structural studies using single-particle cryo-electron microscopy (cryo-EM) and in situ cryo-electron tomography (cryo-ET) have revealed the architecture of microtubule-associated LRRK2 filaments, and that formation of these filaments requires LRRK2’s kinase to be in the active-like conformation. However, whether LRRK2 can interact with and form filaments on microtubules in its autoinhibited state, where the kinase domain is in the inactive conformation and the N-terminal LRR domain covers the kinase active site, was not known. Using cryo-ET, we show that full-length LRRK2 can oligomerize on microtubules in its autoinhibited state. Both WT-LRRK2 and PD-linked LRRK2 mutants formed filaments on microtubules. While these filaments are stabilized by the same interfaces seen in the active-LRRK2 filaments, we observed a new interface involving the N-terminal repeats that were disordered in the active-LRRK2 filaments. The helical parameters of the autoinhibited-LRRK2 filaments are different from those reported for the active-LRRK2 filaments. Finally, the autoinhibited-LRRK2 filaments are shorter and less regular, suggesting they are less stable.
0

Cryo-EM uncovers a sequential mechanism for RNA polymerase I pausing and stalling at abasic DNA lesions

Alicia Santos-Aledo et al.Sep 9, 2024
RNA polymerase I (Pol I) transcribes ribosomal DNA (rDNA) to produce the rRNA precursor, which accounts for up to 60% of the total transcriptional activity in growing cells. Pol I monitors rDNA integrity and influences cell survival, but little is known about how this enzyme processes abasic DNA lesions. Here, we report electron cryo-microscopy (cryo-EM) structures of Pol I at different stages of stalling at abasic sites, supported by in vitro transcription studies. Our results show that templating abasic sites slow nucleotide, which occurs by addition by base sandwiching between the RNA 3-prime end and the Pol I bridge helix. However, the presence of a templating abasic site induces opening of the Pol I cleft for either enzyme dissociation from DNA or for access of A12-Ct into the active site to stimulate RNA cleavage. Nucleotide addition opposite the lesion induces an early translocation intermediate that is different from previously-described RNA polymerase paused states, as DNA bases in the hybrid tilt to form hydrogen bonds with the newly-added RNA base. While in this state nucleotide addition is strongly disfavoured, intrinsic Pol I RNA cleavage activity acts as a failsafe route to minimize lesion bypass. Our results uncover a two-step mechanism leading to persistent Pol I stalling after nucleotide addition opposite Ap sites, which is distinct from arrest by CPD lesions and from Pol II blockage at Ap sites.
0

Development of LRRK2 designed ankyrin-repeat proteins

Verena Dederer et al.Jan 1, 2023
Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson9s disease (PD) has led to intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its activity are needed. Here, we identified a series of high-affinity LRRK2-binding designed ankyrin-repeat proteins (DARPins). One of these DARPins (E11) bound to the LRRK2 WD40 domain with high affinity. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.