YK
Yuki Kagaya
Author with expertise in Prediction of Protein Subcellular Localization
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
256
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

ATTED-II in 2018: A Plant Coexpression Database Based on Investigation of the Statistical Property of the Mutual Rank Index

Takeshi Obayashi et al.Dec 1, 2017
ATTED-II (http://atted.jp) is a coexpression database for plant species to aid in the discovery of relationships of unknown genes within a species. As an advanced coexpression analysis method, multispecies comparisons have the potential to detect alterations in gene relationships within an evolutionary context. However, determining the validity of comparative coexpression studies is difficult without quantitative assessments of the quality of coexpression data. ATTED-II (version 9) provides 16 coexpression platforms for nine plant species, including seven species supported by both microarray- and RNA sequencing (RNAseq)-based coexpression data. Two independent sources of coexpression data enable the assessment of the reproducibility of coexpression. The latest coexpression data for Arabidopsis (Ath-m.c7-1 and Ath-r.c3-0) showed the highest reproducibility (Jaccard coefficient = 0.13) among previous coexpression data in ATTED-II. We also investigated the statistical basis of the mutual rank (MR) index as a coexpression measure by bootstrap sampling of experimental units. We found that the error distribution of the logit-transformed MR index showed normality with equal variances for each coexpression platform. Because the MR error was strongly correlated with the number of samples for the coexpression data, typical confidence intervals for the MR index can be estimated for any coexpression platform. These new, high-quality coexpression data can be analyzed with any tool in ATTED-II and combined with external resources to obtain insight into plant biology.
0
Citation245
0
Save
0

AttentiveDist: Protein Inter-Residue Distance Prediction Using Deep Learning with Attention on Quadruple Multiple Sequence Alignments

Aashish Jain et al.Nov 25, 2020
ABSTRACT Protein 3D structure prediction has advanced significantly in recent years due to improving contact prediction accuracy. This improvement has been largely due to deep learning approaches that predict inter-residue contacts and, more recently, distances using multiple sequence alignments (MSAs). In this work we present AttentiveDist, a novel approach that uses different MSAs generated with different E-values in a single model to increase the co-evolutionary information provided to the model. To determine the importance of each MSA’s feature at the inter-residue level, we added an attention layer to the deep neural network. The model is trained in a multi-task fashion to also predict backbone and orientation angles further improving the inter-residue distance prediction. We show that AttentiveDist outperforms the top methods for contact prediction in the CASP13 structure prediction competition. To aid in structure modeling we also developed two new deep learning-based sidechain center distance and peptide-bond nitrogen-oxygen distance prediction models. Together these led to a 12% increase in TM-score from the best server method in CASP13 for structure prediction.
0

Improved Peptide Docking with Privileged Knowledge Distillation using Deep Learning

Zicong Zhang et al.Jan 1, 2023
Protein-peptide interactions play a key role in biological processes. Understanding the interactions that occur within a receptor-peptide complex can help in discovering and altering their biological functions. Various computational methods for modeling the structures of receptor-peptide complexes have been developed. Recently, accurate structure prediction enabled by deep learning methods has significantly advanced the field of structural biology. AlphaFold (AF) is among the top-performing structure prediction methods and has highly accurate structure modeling performance on single-chain targets. Shortly after the release of AlphaFold, AlphaFold-Multimer (AFM) was developed in a similar fashion as AF for prediction of protein complex structures. AFM has achieved competitive performance in modeling protein-peptide interactions compared to previous computational methods; however, still further improvement is needed. Here, we present DistPepFold, which improves protein-peptide complex docking using an AFM-based architecture through a privileged knowledge distillation approach. DistPepFold leverages a teacher model that uses native interaction information during training and transfers its knowledge to a student model through a teacher-student distillation process. We evaluated DistPepFold9s docking performance on two protein-peptide complex datasets and showed that DistPepFold outperforms AFM. Furthermore, we demonstrate that the student model was able to learn from the teacher model to make structural improvements based on AFM predictions.