MC
Melissa Chiasson
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
385
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Multiplex assessment of protein variant abundance by massively parallel sequencing

Kenneth Matreyek et al.May 20, 2018
+13
J
L
K
Determining the pathogenicity of genetic variants is a critical challenge, and functional assessment is often the only option. Experimentally characterizing millions of possible missense variants in thousands of clinically important genes requires generalizable, scalable assays. We describe variant abundance by massively parallel sequencing (VAMP-seq), which measures the effects of thousands of missense variants of a protein on intracellular abundance simultaneously. We apply VAMP-seq to quantify the abundance of 7,801 single-amino-acid variants of PTEN and TPMT, proteins in which functional variants are clinically actionable. We identify 1,138 PTEN and 777 TPMT variants that result in low protein abundance, and may be pathogenic or alter drug metabolism, respectively. We observe selection for low-abundance PTEN variants in cancer, and show that p.Pro38Ser, which accounts for ~10% of PTEN missense variants in melanoma, functions via a dominant-negative mechanism. Finally, we demonstrate that VAMP-seq is applicable to other genes, highlighting its generalizability. VAMP-seq is a scalable assay that measures the effects of missense variants on intracellular protein abundance. Applying VAMP-seq to thousands of PTEN and TPMT variants helps to classify them as pathogenic or benign.
1
Citation371
0
Save
0

Multiplex Assessment of Protein Variant Abundance by Massively Parallel Sequencing

Kenneth Matreyek et al.Jan 16, 2018
+13
J
L
K
ABSTRACT Determining the pathogenicity of human genetic variants is a critical challenge, and functional assessment is often the only option. Experimentally characterizing millions of possible missense variants in thousands of clinically important genes will likely require generalizable, scalable assays. Here we describe Variant Abundance by Massively Parallel Sequencing (VAMP-seq), which measures the effects of thousands of missense variants of a protein on intracellular abundance in a single experiment. We apply VAMP-seq to quantify the abundance of 7,595 single amino acid variants of two proteins, PTEN and TPMT, in which functional variants are clinically actionable. We identify 1,079 PTEN and 805 TPMT single amino acid variants that result in low protein abundance, and may be pathogenic or alter drug metabolism, respectively. We observe selection for low-abundance PTEN variants in cancer, and our abundance data suggest that a PTEN variant accounting for ~10% of PTEN missense variants in melanomas functions via a dominant negative mechanism. Finally, we demonstrate that VAMP-seq can be applied to other genes, highlighting its potential as a generalizable assay for characterizing missense variants.
0
Citation8
0
Save
36

Massively parallel characterization of CYP2C9 variant enzyme activity and abundance

Clara Amorosi et al.Mar 14, 2021
+7
M
M
C
ABSTRACT CYP2C9 encodes a cytochrome P450 enzyme responsible for metabolizing up to 15% of small molecule drugs, and CYP2C9 variants can alter the safety and efficacy of these therapeutics. In particular, the anti-coagulant warfarin is prescribed to over 15 million people annually and polymorphisms in CYP2C9 can affect patient response leading to an increased risk of hemorrhage. We developed Click-seq, a pooled yeast-based activity assay to test thousands of variants. Using Click-seq, we measured the activity of 6,142 missense variants expressed in yeast. We also measured the steady-state cellular abundance of 6,370 missense variants expressed in a human cell line using Variant Abundance by Massively Parallel sequencing (VAMP-seq). These data revealed that almost two-thirds of CYP2C9 variants showed decreased activity, and that protein abundance accounted for half of the variation in CYP2C9 function. We also measured activity scores for 319 previously unannotated human variants, many of which may have clinical relevance.
36
Citation6
0
Save
10

Multiplexed measurement of variant abundance and activity reveals VKOR topology, active site and human variant impact

Melissa Chiasson et al.May 10, 2020
+9
N
D
M
ABSTRACT Vitamin K epoxide reductase (VKOR) drives the vitamin K cycle, activating vitamin K-dependent blood clotting factors. VKOR is also the target of the widely used anticoagulant drug, warfarin Despite VKOR’s pivotal role in coagulation, its structure and active site remain poorly understood. In addition, VKOR variants can cause vitamin K-dependent clotting factor deficiency 2 or alter warfarin response. Here, we used multiplexed, sequencing-based assays to measure the effects of 2,695 VKOR missense variants on abundance and 697 variants on activity in cultured human cells. The large-scale functional data, along with an evolutionary coupling analysis, supports a four transmembrane domain topology, with variants in transmembrane domains exhibiting strongly deleterious effects on abundance and activity. Functionally constrained regions of the protein define the active site, and we find that, of four conserved cysteines putatively critical for function, only three are absolutely required. Finally, 25% of human VKOR missense variants show reduced abundance or activity, possibly conferring warfarin sensitivity or causing disease.