OY
Olivia Yang
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
0
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1

Digvijay Singh et al.Oct 18, 2017
CRISPR-Cas9, which imparts adaptive immunity against foreign genomic invaders in certain prokaryotes, has been repurposed for genome engineering applications. More recently, another RNA-guided CRISPR endonuclease called Cpf1 (also known as Cas12a) was identified and is also being repurposed. Little is known about the kinetics and mechanism of Cpf1 DNA interaction and how sequence mismatches between the DNA target and guide-RNA influence this interaction. We have used single-molecule fluorescence imaging and biochemical assays to characterize DNA interrogation, cleavage, and product release by three Cpf1 orthologues. Like Cas9, Cpf1 initially binds DNA in search of PAM (protospacer-adjacent motif) sequences, verifies the target sequence unidirectionally from the PAM-proximal end and rapidly rejects any targets that lack a PAM or that are poorly matched with the guide-RNA. Cpf1 requires ~17 bp sequence match for both stable binding and cleavage, contrasting it with Cas9 which requires 9 bp for stable binding and ~16 bp for cleavage. Unlike Cas9, which does not release the DNA cleavage products, Cpf1 rapidly releases the PAM-distal cleavage product, but not the PAM-proximal product. Our findings have important implications on Cpf1-based genome engineering and manipulation applications.
0

Mechanisms of improved specificity of engineered Cas9s revealed by single molecule analysis

Digvijay Singh et al.Sep 22, 2017
In microbes, CRISPR-Cas systems provide adaptive immunity against invading genetic elements. Cas9 in complex with a guide-RNA targets complementary DNA for cleavage and has been repurposed for wide-ranging biological applications. New Cas9s have been engineered (eCas9 and Cas9-HF1) to improve specificity, but how they help reduce off-target cleavage is not known. Here, we developed single molecule DNA unwinding assay to show that sequence mismatches affect cleavage reactions through rebalancing the internal unwinding/rewinding equilibrium. Increasing PAM-distal mismatches facilitate rewinding, and the associated cleavage impairment shows that cleavage proceeds from the unwound state. Engineered Cas9s depopulate the unwound state more readily upon mismatch detection. Intrinsic cleavage rate is much lower for engineered Cas9s, preventing cleavage from transiently unwound off-targets. DNA interrogation experiments showed that engineered Cas9s require about one additional base pair match for stable binding, freeing them from sites that would otherwise sequester them. Therefore, engineered Cas9s achieve their improved specificity (1) by inhibiting stable DNA binding to partially matching sequences, (2) by making DNA unwinding more sensitive to mismatches, and (3) by slowing down intrinsic cleavage reaction.