MX
Mengqing Xiang
Author with expertise in Molecular Mechanisms of Retinal Degeneration and Regeneration
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
404
h-index:
41
/
i10-index:
75
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons

Mengqing Xiang et al.Jul 1, 1995
A search for POU domain sequences expressed in the human retina has led to the identification of three closely related genes: Brn-3a, Brn-3b, and Brn-3c. The structure and expression pattern of Brn-3b was reported earlier (Xiang et al., 1993); we report here the structures and expression patterns of Brn-3a and Brn-3c. Antibodies specific for each Brn-3 protein were generated and shown to label only ganglion cells in a variety of vertebrate retinas. A complex pattern of strongly and weakly immunolabeled ganglion cells was observed in mouse, cat, and monkey retinae. In mouse and cat retinae, Brn-3a and Brn-3b proteins are found in a large fraction of ganglion cells, whereas Brn-3c is present in fewer ganglion cells. In the cat retina, anti-Brn-3a immunoreactivity was strong in the small ganglion cells (gamma cells) and weak in the remaining ganglion cells (alpha and beta cells); anti-Brn-3b immunoreactivity was present in all ganglion cells; and anti-Brn3c immunoreactivity was confined to the small ganglion cells. Immunolabeling of macaque retinae following retrograde labeling from the lateral geniculate nucleus revealed strong anti-Brn-3a immunoreactivity in a minority of retrogradely labeled P-type ganglion cells, and weak Brn-3a immunoreactivity in all of the remaining P- and M-type ganglion cells. In the same retinae, strong anti-Brn-3b immunoreactivity was seen in nearly all P-type ganglion cells and weak immunoreactivity in nearly all M-type ganglion cells. Each of the Brn-3-specific antibodies also labeled subsets of neurons in the dorsal root and trigeminal ganglia, suggesting that primary somatosensory neurons and retinal ganglion cells share genetic regulatory hierarchies. In vitro selection of an optimal DNA binding site using the Brn-3b POU domain has revealed a consensus [(A/G)CTCATTAA(T/C)] that is recognized by each of the Brn-3 POU domains and is distinct from binding sites previously described for other POU domain proteins.
0

Circular RNA-Based Therapy Provides Sustained and Robust Neuroprotection for Retinal Ganglion Cell

Wenbing Jiang et al.Jun 17, 2024
Ocular neurodegenerative diseases like glaucoma lead to progressive retinal ganglion cell (RGC) loss, causing irreversible vision impairment. Neuroprotection is needed to preserve RGCs across debilitating conditions. Nerve growth factor (NGF) protein therapy shows efficacy, but struggles with limited bioavailability and a short half-life. Here we explore a novel approach to address this deficiency by utilizing circular RNA (circRNA)-based therapy. We show that circRNAs exhibit an exceptional capacity for prolonged protein expression and circRNA-expressed NGF protects cells from glucose deprivation. In a mouse optic nerve crush model, lipid nanoparticle (LNP)-formulated circNGF administered intravitreally protects RGCs and axons from injury-induced degeneration. It also significantly outperforms NGF protein therapy without detectable retinal toxicity. Furthermore, single-cell transcriptomics revealed LNP-circNGF's multifaceted therapeutic effects, enhancing genes related to visual perception while reducing trauma-associated changes. This study signifies the promise of circRNA-based therapies for treating ocular neurodegenerative diseases and provides an innovative intervention platform for other ocular diseases.
5

Decoding regulatory specificity of human ribosomal proteins

Yizhao Luan et al.Mar 28, 2021
Abstract Human ribosomes, made of around 80 ribosomal proteins (RPs) and four ribosomal RNAs, have long been thought as uniform passive protein-making factories with little regulatory function. Recently, accumulating evidence showed heterogeneity of RP composition in ribosomes responsible for regulating gene expression in development and tumorigenesis. However, a comprehensive understanding of regulatory spectrum of RPs is still lacking. In this study, we conducted a systematic survey of regulatory specificity of human RPs on global gene expression. We quantified translational and transcriptional changes of gene expression upon deficiency of 75 RPs, including 44 from the large subunit (60S) and 31 from the small subunit (40S), by ribosomal profiling and RNA sequencing analysis. We showed that RP deficiency induced diverse expression changes, particularly at the translational level. RPs were subjected to co-translational regulation under ribosomal stress where deficiency of the 60S and the 40S RPs had opposite effects on the two subunits. RP deficiency perturbed expression of genes related to cell cycle, cellular metabolism, signal transduction and development. Deficiency of RPs from the 60S led to a greater repression effect on cell growth than that from the 40S by perturbing P53 signaling and cell cycle pathways. To demonstrate functional specificity of RPs, we showed that RPS8 deficiency stimulated cellular apoptosis and RPL13 or RPL18 deficiency promoted cellular senescence. We also showed that RPL11 and RPL15 played important roles in retina development and angiogenesis, respectively. Overall, our study demonstrated a widespread regulatory role of RPs in controlling cellular activity, providing an important resource which can offer novel insights into ribosome regulation in human diseases and cancer.
5
Citation1
0
Save
0

Integration and Differentiation of Transplanted Human iPSC-Derived Retinal Ganglion Cell Precursors in Murine Retinas

Qiannan Lei et al.Dec 2, 2024
Optic neuropathy such as glaucoma, stemming from retinal ganglion cell (RGC) degeneration, is a leading cause of visual impairment. Given the substantial loss of RGCs preceding clinical detection of visual impairment, cell replacement therapy emerges as a compelling treatment strategy. Human-induced pluripotent stem cells (hiPSCs) serve as invaluable tools for exploring the developmental processes and pathological mechanisms associated with human RGCs. Utilizing a 3D stepwise differentiation protocol for retinal organoids, we successfully differentiated RGC precursors from hiPSCs harboring a BRN3B-GFP RGC reporter, verified by GFP expression. Intravitreal transplantation of enriched RGC precursors into healthy or N-methyl-D-aspartate (NMDA)-injured mice demonstrated their survival, migration, and integration into the proper retinal layer, the ganglion cell layer, after 3 weeks. Notably, these transplanted cells differentiated into marker-positive RGCs and extended neurites. Moreover, enhanced cell survival was observed with immunosuppressive and anti-inflammatory treatments of the host prior to transplantation. These data underscore the potential of transplanted RGC precursors as a promising therapeutic avenue for treating degenerative retinal diseases resulting from RGC dysfunction.
0

Directed robust generation of functional retinal ganglion cells from Muller glia

Dongchang Xiao et al.Aug 14, 2019
Glaucoma and optic neuropathies cause progressive and irreversible degeneration of retinal ganglion cells (RGCs) and the optic nerve and are currently without any effective treatment. Previous research into cell replacement therapy of these neurodegenerative diseases has been stalled due to the limited capability for grafted RGCs to integrate into the retina and project properly along the long visual pathway to reach their brain targets. In vivo RGC regeneration would be a promising alternative approach but mammalian retinas lack regenerative capacity even though cold-blood vertebrates such as zebrafish have the full capacity to regenerate a damaged retina using Muller glia (MG) as retinal stem cells. Nevertheless, mammalian MG undergo limited neurogenesis when stimulated by retinal injury. Therefore, a fundamental question that remains to be answered is whether MG can be induced to efficiently regenerate functional RGCs for vision restoration in mammals. Here we show that without stimulating proliferation, the transcription factor (TF) Math5 together with a Brn3 TF family member are able to reprogram mature mouse MG into RGCs with exceedingly high efficiency while either alone has no or limited capacity. The reprogrammed RGCs extend long axons that make appropriate intra-retinal and extra-retinal projections through the entire visual pathway including the optic nerve, optic chiasm and optic tract to innervate both image-forming and non-image-forming brain targets. They exhibit typical neuronal electrophysiological properties and improve visual responses in two glaucoma mouse models: Brn3b null mutant mice and mice with the optic nerve crushed (ONC). Together, our data provide evidence that mammalian MG can be reprogrammed by defined TFs to achieve robust in vivo regeneration of functional RGCs as well as a promising new therapeutic approach to restore vision to patients with glaucoma and other optic neuropathies.
1

Notch signaling determines cell-fate specification of the two main types of vomeronasal neurons of rodents

Raghu Katreddi et al.Oct 26, 2021
Abstract The ability of terrestrial vertebrates to find food, mating partners and to avoid predators heavily relies on the detection of chemosensory information from the environment. The olfactory system of most vertebrate species comprises two distinct chemosensory systems usually referred to as the main and the accessory olfactory system. Olfactory sensory neurons of the main olfactory epithelium detect and transmit odor information to main olfactory bulb (MOB), while the chemosensory neurons of the vomeronasal organ detect semiochemicals responsible for social and sexual behaviors and transmit information to the accessory olfactory bulb (AOB). The vomeronasal sensory epithelium (VNE) of most mammalian species contains uniform vomeronasal (VN) system with vomeronasal sensory neurons (VSNs) expressing vomeronasal receptors of the V1R family. However, rodents and some marsupials have developed a more complex binary VN system, where VNO containing a second main type of VSNs expressing vomeronasal receptors of the V2R family is identified. In mice, V1R and V2R VSNs form from a common pool of progenitors but have distinct differentiation programs. As they mature, they segregate in different regions of the VNE and connect with different parts of the AOB. How these two main types of VSNs are formed has never been addressed. In this study, using single cell RNA sequencing data, we identified differential expression of Notch1 receptor and Dll4 ligand among the neuronal precursors at the VSN dichotomy. We further demonstrated with loss of function (LOF) and gain of function (GOF) studies that Dll4-Notch1 signaling plays a crucial role in triggering the binary dichotomy between the two main types of VSNs in mice. Graphical Abstract
2

Widespread translational control regulates retinal development in mouse

Kaining Chen et al.Mar 2, 2021
ABSTRACT Retinal development is tightly regulated to ensure the generation of appropriate cell types and the assembly of functional neuronal circuitry. Despite remarkable advances that have been made in understanding the regulation of gene expression during retinal development, how translational regulation guides retinogenesis is less understood. Here, we conduct a comprehensive translatome and transcriptome survey to the mouse retinogenesis from the embryonic to the adult stages. We discover thousands of genes that have dynamic changes at the translational level and pervasive translational regulation in a developmental stage-specific manner with specific biological functions. We further identify genes whose translational efficiencies are frequently controlled by changing usage in the upstream open reading frames during retinal development. These genes are enriched for biological functions highly important to neurons, such as neuron projection organization and microtubule-based protein transport. Surprisingly, we discover hundreds of previously uncharacterized micropeptides, translated from putative long non-coding RNAs and circular RNAs. We validate their protein products in vitro and in vivo and demonstrate their potentials in regulating retinal development. Together, our study presents a rich and complex landscape of translational regulation and provides novel insights into their roles during retinogenesis.