MT
Michiel Thiecke
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
970
h-index:
7
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters

Biola-Maria Javierre et al.Nov 1, 2016
Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases.
0
Citation962
0
Save
0

Cohesin-dependent and independent mechanisms support chromosomal contacts between promoters and enhancers

Michiel Thiecke et al.Feb 11, 2020
It is currently assumed that 3D chromosomal organisation plays a central role in transcriptional control. However, recent evidence shows that steady-state transcription of only a minority of genes is affected by depletion of architectural proteins such as cohesin and CTCF. Here, we have used Capture Hi-C to interrogate the dynamics of chromosomal contacts of all human gene promoters upon rapid architectural protein degradation. We show that promoter contacts lost in these conditions tend to be long-range, with at least one interaction partner localising in the vicinity of topologically associated domain (TAD) boundaries. In contrast, many shorter-range chromosomal contacts, particularly those that connect active promoters with each other and with active enhancers remain unaffected by cohesin and CTCF depletion. We demonstrate that the effects of cohesin depletion on nascent transcription can be explained by changes in the connectivity of their enhancers. Jointly, these results provide a mechanistic explanation to the limited, but consistent effects of cohesin and CTCF on steady-state transcription and point towards the existence of alternative enhancer-promoter pairing mechanisms that are independent of these proteins.