ZL
Zerong Li
Author with expertise in Metabolic Engineering and Synthetic Biology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
2
h-index:
26
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Theoretical Kinetic Studies on Intramolecular H-migration reactions of Peroxy Radicals of Diethoxymethane

Siyu Chen et al.Jan 1, 2024
Diethoxymethane (DEM), a promising carbon-neutral fuel, has high reactivity at low temperatures. The intramolecular hydrogen migration reaction of the DEM peroxy radicals can be viewed as a critical step in the low temperature oxidation mechanism of DEM. In this work, multistructural transition state theory (MS-TST) was utilized to calculate the high-pressure limit rate constants of 1,5, 1,6 and 1,7 H-migration reactions for DEM peroxy radicals. In addition to the tunneling effects and anharmonic effects, the intramolecular effects, including steric hindrance, intramolecular hydrogen bonding and conformational changes in reactants and transition states, are also considered in the rate constant calculations. The calculated energy barriers and rate constants demonstrated the substantial impact of intramolecular effects on the kinetics of H-migration reactions in DEM peroxy radicals. Specifically, the distinct configurations of transition states could potentially influence the reaction kinetics. The pressure-dependent rate constants are computed using system-specific quantum RRK theory. The calculated results show that the falloff effect of 1,5 and 1,6 H-migration reactions is more pronounced than that of the 1,7 H-migration reaction. The thermodynamics and kinetics presented in this study could be instrumental in understanding the low-temperature oxidation mechanism of DEM and might prove crucial for future research on comprehensively analyzing the autoignition behavior.
19

What does your cell really do? Model-based assessment of mammalian cells metabolic functionalities using omics data

Anne Richelle et al.Apr 28, 2020
Abstract Large-scale omics experiments have become standard in biological studies, leading to a deluge of data. However, researchers still face the challenge of connecting changes in the omics data to changes in cell functions, due to the complex interdependencies between genes, proteins and metabolites. Here we present a novel framework that begins to overcome this problem by allowing users to infer how metabolic functions change, based on omics data. To enable this, we curated and standardized lists of metabolic tasks that mammalian cells can accomplish. We then used genome-scale metabolic networks to define gene modules responsible for each specific metabolic task. We further developed a framework to overlay omics data on these modules to predict pathway usage for each metabolic task. The proposed approach allows one to directly predict how changes in omics experiments change cell or tissue function. We further demonstrated how this new approach can be used to leverage the metabolic functions of biological entities from the single cell to their organization in tissues and organs using multiple transcriptomic datasets (human and mouse). Finally, we created a web-based CellFie module that has been integrated into the list of tools available in GenePattern ( www.genepattern.org ) to enable adoption of the approach.
0

Reaction Rate Rules of Intramolecular H-Migration Reaction Class for RIORIIOO·Radicals in Ether Combustion

Xiaohui Sun et al.Sep 15, 2024
The intramolecular H-migration reaction of RIORIIOO· radicals constitute a key class of reactions in the low-temperature combustion mechanism of ethers. Despite this, there is a dearth of direct computations regarding the potential energy surface and rate constants specific to ethers, especially when considering large molecular systems and intricate branched-chain structures. Furthermore, combustion kinetic models for large molecular ethers generally utilize rate constants derived from those of structurally similar alcohols or alkane fuels. Consequently, chemical kinetic studies involve the calculation of energy barriers and rate rules for the intramolecular H-migration reaction class of RIORIIOO· radicals, which are systematically conducted using the isodesmic reaction method (IRM). The geometries of the species participating in these reactions are optimized, and frequency calculations are executed using the M06–X method in tandem with the 6–31+G(d,p) basis set by the Gaussian 16 program. Moreover, the M06–2X/6–31+G(d,p) method acts as the low-level ab initio method, while the CBS–QB3 method is utilized as the high-level ab initio method for calculating single-point energies. Rate constants at the high-pressure-limit are computed based on the reaction class transition state theory (RC-TST) by ChemRate program, incorporating asymmetric Eckart tunneling corrections for intramolecular H-migration reactions across a temperature range of 500 to 2000 K. It was found that the isodesmic reaction method gives accurate energy barriers and rate constants, and the rate constants of the H-migration reaction for RIORIIOO· radicals diverge from those of comparable reactions in alkanes and alcohol fuels. There are significant disparities in energy barriers and rate constants across the entire reaction classes of the H-migration reaction for RIORIIOO· radicals, necessitating the subdivision of the H-migration reaction into subclasses. Rate rules are established by averaging the rate constants of representative reactions for each subclass, which is pivotal for the advancement of accurate low-temperature combustion reaction mechanisms for ethers.