NW
Ned Wingreen
Author with expertise in Bacterial Physiology and Genetics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
61
(77% Open Access)
Cited by:
13,176
h-index:
82
/
i10-index:
211
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Landauer formula for the current through an interacting electron region

Yigal Meir et al.Apr 20, 1992
N
Y
A Landauer formula for the current through a region of interacting electrons is derived using the nonequilibrium Keldysh formalism. The case of proportionate coupling to the left and right leads, where the formula takes an especially simple form, is studied in more detail. Two particular examples where interactions give rise to novel effects in the current are discussed: In the Kondo regime, an enhanced conductance is predicted, while a suppressed conductance is predicted for tunneling through a quantum dot in the fractional quantum Hall regime.
0

Time-dependent transport in interacting and noninteracting resonant-tunneling systems

Antti‐Pekka Jauho et al.Aug 15, 1994
Y
N
A
We consider a mesoscopic region coupled to two leads under the influence of external timedependent voltages. The time dependence is coupled to source and drain contacts, the gates controlling the tunnel-barrier heights, or to the gates that define the mesoscopic region. We derive, with the Keldysh nonequilibrium-Green-function technique, a formal expression for the fully nonlinear, time-dependent current through the system. The analysis admits arbitary interactions in the mesoscopic region, but the leads are treated as noninteracting. For proportionate coupling to the leads, the time-averaged current is simply the integral between the chemical potentials of the time-averaged density of states, weighted by the coupling to the leads, in close analogy to the time-independent result of Meir and Wingreen [Phys. Rev. Lett. 68, 2512 (1992)]. Analytical and numerical results for the exactly solvable noninteracting resonant-tunneling system are presented. Due to the coherence between the leads and the resonant site, the current does not follow the driving signal adiabatically: a "ringing" current is found as a response to a voltage pulse, and a complex time dependence results in the case of harmonic driving voltages. We also establish a connection to recent linear-response calculations, and to earlier studies of electron-phonon scattering effects in resonant tunneling.
0

Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance

Vidya Madhavan et al.Apr 24, 1998
+2
T
W
V
The Kondo effect arises from the quantum mechanical interplay between the electrons of a host metal and a magnetic impurity and is predicted to result in local charge and spin variations around the magnetic impurity. A cryogenic scanning tunneling microscope was used to spatially resolve the electronic properties of individual magnetic atoms displaying the Kondo effect. Spectroscopic measurements performed on individual cobalt atoms on the surface of gold show an energetically narrow feature that is identified as the Kondo resonance—the predicted response of a Kondo impurity. Unexpected structure in the Kondo resonance is shown to arise from quantum mechanical interference between the d orbital and conduction electron channels for an electron tunneling into a magnetic atom in a metallic host.
0

The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae

Derrick Lenz et al.Jul 1, 2004
+3
B
K
D
Quorum-sensing bacteria communicate with extracellular signal molecules called autoinducers. This process allows community-wide synchronization of gene expression. A screen for additional components of the Vibrio harveyi and Vibrio cholerae quorum-sensing circuits revealed the protein Hfq. Hfq mediates interactions between small, regulatory RNAs (sRNAs) and specific messenger RNA (mRNA) targets. These interactions typically alter the stability of the target transcripts. We show that Hfq mediates the destabilization of the mRNA encoding the quorum-sensing master regulators LuxR (V. harveyi) and HapR (V. cholerae), implicating an sRNA in the circuit. Using a bioinformatics approach to identify putative sRNAs, we identified four candidate sRNAs in V. cholerae. The simultaneous deletion of all four sRNAs is required to stabilize hapR mRNA. We propose that Hfq, together with these sRNAs, creates an ultrasensitive regulatory switch that controls the critical transition into the high cell density, quorum-sensing mode.
0
Citation951
0
Save
0

Transport through a strongly interacting electron system: Theory of periodic conductance oscillations

Yigal Meir et al.Jun 10, 1991
P
N
Y
The conductance through a quantum dot is calculated via an Anderson model of a site weakly coupled to ideal leads with an on-site Coulomb interaction. As the chemical potential is varied, peaks occur periodically in the conductance whenever an electron is added to the site. The participation of multiple electronic levels in each conductance peak explains the anomalous temperature dependence of peak heights observed in recent narrow-channel experiments.
0
Citation665
0
Save
0

Emergence of Preferred Structures in a Simple Model of Protein Folding

Hao Li et al.Aug 2, 1996
N
C
R
H
Protein structures in nature often exhibit a high degree of regularity (secondary structures, tertiary symmetries, etc.) absent in random compact conformations. We demonstrate in a simple lattice model of protein folding that structural regularities are related to high designability and evolutionary stability. We measure the designability of each compact structure by the number of sequences which can design the structure, i.e., which possess the structure as their nondegenerate ground state. We find that compact structures are drastically different in terms of their designability; highly designable structures emerge with a number of associated sequences much larger than the average. These structures are found to have ``protein like'' secondary structure and even tertiary symmetries. In addition, they are also thermodynamically more stable than ordinary structures. These results suggest that protein structures are selected because they are easy to design and stable against mutations, and that such a selection simutaneously leads to thermodynamic stability.
0
Citation660
0
Save
0

Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome

Younggy Shin et al.Nov 1, 2018
+6
D
Y
Y

Summary

 Phase transitions involving biomolecular liquids are a fundamental mechanism underlying intracellular organization. In the cell nucleus, liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is implicated in assembly of the nucleolus, as well as transcriptional clusters, and other nuclear bodies. However, it remains unclear whether and how physical forces associated with nucleation, growth, and wetting of liquid condensates can directly restructure chromatin. Here, we use CasDrop, a novel CRISPR-Cas9-based optogenetic technology, to show that various IDPs phase separate into liquid condensates that mechanically exclude chromatin as they grow and preferentially form in low-density, largely euchromatic regions. A minimal physical model explains how this stiffness sensitivity arises from lower mechanical energy associated with deforming softer genomic regions. Targeted genomic loci can nonetheless be mechanically pulled together through surface tension-driven coalescence. Nuclear condensates may thus function as mechano-active chromatin filters, physically pulling in targeted genomic loci while pushing out non-targeted regions of the neighboring genome. 

Video Abstract

0
Citation575
0
Save
0

Anderson model out of equilibrium: Noncrossing-approximation approach to transport through a quantum dot

Ned Wingreen et al.Apr 15, 1994
Y
N
The infinite-U Anderson model is applied to transport through a quantum dot. The current and density of states are obtained via the non-crossing approximation for two spin-degenerate levels weakly coupled to two leads. At low temperatures, the Kondo peak in the equilibrium density of states strongly enhances the linear-response conductance. Application of a finite voltage bias reduces the conductance and splits the peak in the density of states. The split peaks, one at each chemical potential, are suppressed in amplitude by a finite dissipative lifetime. We estimate this lifetime perturbatively as the time to transfer an electron from the higher chemical potential lead to the lower chemical potential one. At zero magnetic field, the clearest signatures of the Kondo effect in transport through a quantum dot are the broadening, shift, and enhancement of the linear-response conductance peaks at low temperatures, and a peak in the nonlinear differential conductance around zero bias.
0

Nonuniversal Conductance Quantization in Quantum Wires

Amir Yacoby et al.Nov 25, 1996
+3
N
H
A
We have measured the transport properties of high-quality quantum wires fabricated in GaAs-AlGaAs by using cleaved edge overgrowth. The low temperature conductance is quantized as the electron density in the wire is varied. While the values of the conductance plateaus are reproducible, they deviate from multiples of the universal value of ${2e}^{2}/h$ by as much as 25%. As the temperature or dc bias increases the conductance steps approach the universal value. Several aspects of the data can be explained qualitatively using Luttinger liquid theory although there remain major inconsistencies with such an interpretation.
Load More